Section 14.6: Additional Problems

1. If $f(x, y)=x^{4}+4 x^{3} y-y^{3}$, find the gradient of f and evaluate the gradient at the point $P(1,2)$
2. Given $g(x, y, z)=x^{2}+4 y z^{3}+2 x^{4} z+z^{2}$.
(a) Find the gradient vector at $(3,2,1)$.
(b) Find the directional derivative at $(3,2,1)$, in the direction of $\langle 4,4,2\rangle$.
(c) Find the maximum value of the directional derivative at $(3,2,1)$.
(d) Find the direction of greatest decrease at $(3,2,1)$.
3. Consider the surface given by $x^{2}+2 y^{2}+z^{3}=10$. Find an equation for the tangent plane and the equation for the normal line to the surface at the point $(1,1,2)$.
4. Find all points at which the direction of fastest change of the function $f(x, y)$ is $\mathbf{i}+\mathbf{j}$.
$f(x, y)=x^{2}+y^{2}-2 x-6 y$
