Section 15.3: Additional Problems

1. Set up and compute the polar integral to evaluate the following double integral where the region R is in the first quadrant and is bounded by $x^{2}+y^{2}=25, x^{2}+y^{2}=4$, $y=x$ and $y=0$.
$\iint_{R} x d A$
2. Should this integral be computed converting it to a polar integral?
$\iint_{D} y d A$ where $D=\left\{(x, y) \mid y \geq x^{2}, \quad x^{2}+y^{2} \leq 4\right\}$
3. Set up the integral that will compute the following integral over the region on the $x y$-plane that is inside both of the circles: $x^{2}+y^{2}=4 x$ and $x^{2}+y^{2}=8$.
$\iint_{D} 5 x+y d A$
4. Set up the integral that will compute the following integral over the region on the $x y$-plane that is inside the circle $x^{2}+y^{2}=4 x$ and outside the circle $x^{2}+y^{2}=8$.
$\iint_{D} 5 x+y d A$
5. Setup and compute the double integral(in polar) that would give the volume of the solid bounded by the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$ with the condition that $x \geq 0$.
6. Set up the integral to find the volume under the function $f(x, y)=3 x^{2}+y$ over the interior of one leaf of $r=\sin (2 \theta)$. Picture is not drawn to scale

7. Set up the integral to find the volume under the function $f(x, y)=3 y^{2}$ over the interior of one leaf of $r=\cos (5 \theta)$. Ignore the outer circle in the graph. The computer was being helpful.

