Section 15.3: Additional Problems

1. Set up and compute the polar integral to evaluate the following double integral where the region R is in the first quadrant and is bounded by $x^2 + y^2 = 25$, $x^2 + y^2 = 4$, y = x and y = 0.

$$\iint_R x \ dA$$

2. Should this integral be computed converting it to a polar integral?

$$\iint_{D} y \ dA \text{ where } D = \{(x, y) | y \ge x^2, \ x^2 + y^2 \le 4\}$$

3. Set up the integral that will compute the following integral over the region on the xy-plane that is inside both of the circles: $x^2 + y^2 = 4x$ and $x^2 + y^2 = 8$.

$$\iint_D 5x + y \ dA$$

4. Set up the integral that will compute the following integral over the region on the xy-plane that is inside the circle $x^2 + y^2 = 4x$ and outside the circle $x^2 + y^2 = 8$.

$$\iint_D 5x + y \ dA$$

- 5. Setup and compute the double integral (in polar) that would give the volume of the solid bounded by the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 with the condition that $x \ge 0$.
- 6. <u>Set up</u> the integral to find the volume under the function $f(x, y) = 3x^2 + y$ over the interior of one leaf of $r = \sin(2\theta)$. **Picture is not drawn to scale**

7. Set up the integral to find the volume under the function $f(x, y) = 3y^2$ over the interior of one leaf of $r = \cos(5\theta)$. Ignore the outer circle in the graph. The computer was being helpful.

