Section 15.6: Additional Problems

1. Let $B=[0,1] \times[1,3] \times[0,2]$. Evaluate

$$
\iiint_{B} x(y+2 z) d V
$$

2. Evaluate: $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 6 x y d z d y d x$
3. Setup $\iiint_{E} x y d V$ where V is the tetrahedron with vertices $(0,0,0),(1,0,0),(0,2,0)$, and $(0,0,3)$.
4. A solid E in enclosed by the paraboloids $y=3 x^{2}+3 z^{2}$ and $y=36-x^{2}-z^{2}$. Evaluate $\iiint_{E} x^{2} d V$
5. Set up the integral that would compute the volume of the solid between the cylinders $x^{2}+z^{2}=4$ and $x^{2}+z^{2}=1$ and bounded by the planes $y=x+2$ and $y=0$.
6. Rewrite the integral $\int_{0}^{1} \int_{0}^{2-2 y} \int_{0}^{4-x^{2}} f(x, y, z) d z d x d y$ in the order of $\mathbf{d y} \mathbf{d x} \mathbf{d z}$.
7. Set up the integral that will find the mass of a solid. The solid is inside the cylinder $x^{2}+y^{2}=2 y$, under the surface $z=15+2 x^{2}+2 y^{2}$ and above the plane $z=3 y$. The density function of the solid is $\rho(x, y)=y^{2}$
