Section 15.7: Additional Problems

1. Convert these Cartesian points to cylindrical.
(a) $(1,1,-1)$
(b) $(-1,-1,3)$
2. The solid E is the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=24-x^{2}-y^{2}$. Set up the integral using the cylindrical coordinate system to evaluate $\iiint_{E} x^{2} z d V$
3. The solid E is the region bounded by the paraboloids $y=x^{2}+z^{2}$ and $y=24-x^{2}-z^{2}$. Set up the integral to evaluate $\iiint_{E} z^{2} y d V$
4. Set up the integral, in cylindrical, to find the volume of the solid that is above the lower half of the sphere of radius 2 , centered at the origin and below $z=8-2\left(x^{2}+y^{2}\right)$ and in the half-space $y \geq 0$.
5. Convert the integral $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{\sqrt{3 x^{2}+3 y^{2}}}^{\sqrt{36-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$ to cylindrical
