Section 16.3: Additional Problems

1. Given $F=\left\langle 2 x y^{3}, 3 x^{2} y^{2}\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve given by $\mathbf{r}(t)=\left\langle t^{3}+2 t^{2}-t, 3 t^{4}-t^{2}\right\rangle, 0 \leq t \leq 1$.
2. Let $\mathbf{F}=\left\langle 2 x+y^{3}, 3 x y^{2}+4\right\rangle$. Evaluate $\int_{(0,1)}^{(2,3)} \mathbf{F} \cdot d \mathbf{r}$.
3. Given $F=\left\langle y^{2} \cos (x), 2 y \sin (x)+e^{2 z}, 2 y e^{2 z}\right\rangle$ is a conservative vector field. Find the work done by F when moving a particle on any path C from from the point $\left(0,1, \frac{1}{2}\right)$ to the point $\left(\frac{\pi}{2}, 3,2\right)$.
After learning section 16.5 , see if you can show that this vector field is conservative.
