Section 16.6: Additional Problems

1. Let S be the part of the circular cylinder $x^{2}+z^{2}=9$ in the first octant such that $1 \leq y \leq 12$.
(a) Parameterize S using a polar aspect. Give the intervals for the variables as well as the cross product for the surface.
(b) Parameterize S using a cartesian method. Give the intervals for the variables as well as the cross product for the surface.
2. Let S be the part of the paraboloid $y=18-x^{2}-z^{2}$ that is to the right of the plane $y=2$. Parameterize S using a cartesian method. Give the intervals for the variables as well as the cross product for the surface.
3. Parameterize the surface of the cone $z=\sqrt{x^{2}+y^{2}}$ using spherical.
4. Identify the surface with the given vector equation.
$\mathbf{r}(u, v)=\langle u+v, 4-v, 3+4 u+6 v\rangle$
5. Let S be the part of the paraboloid $x=4+y^{2}+z^{2}$ that is inside the cylinder $y^{2}+z^{2}=16$. Find the surface area of S.
6. Find the area of the surface that is parameterized by $r(a, b)=\langle a b, a+b, a-b\rangle$ with $a^{2}+b^{2} \leq 1$
