Section 16.7: Additional Problems

- 1. A surface is to be oriented in the direction of the positive x-axis. Your friend parameterized the surface and has provided the following cross product. Determine if this cross product could be correct.
 - (a) cross product: $\langle 1, -a, b^2 \rangle$
 - (b) cross product: $\langle 2a, 1, b+a \rangle$
- 2. Evaluate the given surface integral where S is the surface with the parametric equations x = ab, y = a + b, and z = a b where $a^2 + b^2 \le 1$.

$$\iint_S yz \ dS$$

- 3. Let S be the part of the paraboloid $x = y^2 + z^2$ that lies inside the region given by $0 \le y \le 1, 0 \le z \le 1$ with orientation in the positive x direction. Let $\mathbf{F} = \langle e^z, z e^y, y^2 z \rangle$. Find the flux of \mathbf{F} across S. i.e. compute $\iint \mathbf{F} \cdot d\mathbf{S}$
- 4. Let S be the closed surface of a tetrahedron with vertices (0,0,0), (3,0,0), (0,2,0), and (0,0,6) Let $\mathbf{F} = \langle y, z y, x \rangle$ and use positive orientation.

Evaluate
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$