Section 16.7: Additional Problems

1. A surface is to be oriented in the direction of the positive x-axis. Your friend parameterized the surface and has provided the following cross product. Determine if this cross product could be correct.
(a) cross product: $\left\langle 1,-a, b^{2}\right\rangle$
(b) cross product: $\langle 2 a, 1, b+a\rangle$
2. Evaluate the given surface integral where S is the surface with the parametric equations $x=a b, y=a+b$, and $z=a-b$ where $a^{2}+b^{2} \leq 1$.
$\iint_{S} y z d S$
3. Let S be the part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the region given by $0 \leq y \leq 1,0 \leq z \leq 1$ with orientation in the positive x direction.
Let $\mathbf{F}=\left\langle e^{z}, z e^{y}, y^{2} z\right\rangle$. Find the flux of \mathbf{F} across S. i.e. compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
4. Let S be the closed surface of a tetrahedron with vertices $(0,0,0),(3,0,0),(0,2,0)$, and $(0,0,6)$ Let $\mathbf{F}=\langle y, z-y, x\rangle$ and use positive orientation.

Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$

