Section 16.8: Additional Problems

1. Let $\mathbf{F}=\langle x z, 2 x y, 3 x y\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the boundary of the part of the plane $3 x+y+z=3$ in the first octant and C is oriented counterclockwise as viewed from above.
2. Use Stokes's Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$
$\mathbf{F}=\left\langle y z^{3}, \sin (x y z), x\right\rangle$
S is the part of the paraboloid $y=1-x^{2}-z^{2}$ that lies to the right of the $x z$-plane, oriented toward the $x z$-plane.
3. Use Stokes's Theorem to evaluate \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$
$\mathbf{F}=\left\langle x y z, x y, x^{2} y z\right\rangle$
S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward. Hint: Think about the last example in the lecture.
