Section 16.9: Additional Problems

1. Example: Let S be the sphere $x^{2}+y^{2}+z^{2}=16$ with a positive orientation and $\mathbf{F}=\langle 0,0, z\rangle$. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
2. Let S be the closed surface of a tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$, i.e .the surface of the solid in the first octant that is formed by the plane $x+y+z=1$ and the three coordinate planes. Let $\mathbf{F}=\langle y, z-y, x\rangle$ and use positive orientation.

Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
3. Calculate the flux of \mathbf{F} across the surface S with the equation $x^{4}+y^{4}+z^{4}=1$. Assume positive orientation for the surface.

$$
\mathbf{F}=\left\langle x+e^{y \tan (z)}, 3 x e^{x z}, \cos (y)-z\right\rangle
$$

Fun Question: This question is for those of you who find this interesting. This is not an exam question.
Compute $\iint_{S}\left(3 x+8 y+z^{2}\right) d S$ Where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$

