1. The medical records of infants at a hospital show that the infants birth weight are normally distributed with a mean of 7.4 pounds and a standard deviation of 1.2 pounds. Find the probability that an infant selected at random from among those delivered at the hospital
(a) weighed more than 9.2 pounds at birth.
$\operatorname{normalcdf}(9.2,1 \mathrm{e} 99,7.4,1.2)=0.0668$
(b) weighed exactly 8.5 pounds at birth.
zero, since the random variable is continuous.
(c) weighed between 6 and 9 pounds at birth.
normalcdf($6,9,7.4,1.2)=0.7871$
2. Let X be a normally distributed random variable with mean of 45 and standard deviation of 7 .
(a) Find the value of A such that $P(X<A)=.6$

$$
\mathrm{A}=\operatorname{invnorm}(.6,45,7)=46.7734
$$

(b) Find the value of B such that $P(X>B)=.8$

$$
\mathrm{B}=\operatorname{invnorm}(1-.8,45,7)=39.1087
$$

