1. (a) $C(12,4) C(10,1)+C(7,4) C(15,1)$
(b) $C(7,3) C(15,2)+C(7,2) C(15,3)$
(c) $C(22,5)-[C(12,0) C(10,5)+C(12,1) C(10,4)]$
2. $\frac{13!}{5!3!4!}$
or $C(13,5) C(8,3) C(5,4) C(1,1)$
3. (a) $C(12,4) C(7,3) * 7$!
the two combinations pick the people for the picture. the $7!$ puts them in the row.
or $P(12,4) P(7,3) * C(7,4)$
the combination shuffles the guys
(b) $\frac{12 * 7 * 11 * 6 * 10 * 5 * 9+7 * 12 * 6 * 11 * 5 * 10 * 4}{P(19,7)}$
4. This is not binomial since the problem says that the only the first four customers pay with a credit card. This problem is looking at a single branch of the tree.
$(0.26)^{4}(0.74)^{5}$
5. Answer will vary.

Let X be the number of freeshots made out of 100 attempts
6. $\mathrm{n}=80, \mathrm{p}=0.3$
$\mathrm{r}=0,1,2, \ldots, 27$
$\operatorname{binomcdf}(80,0.3,27)=0.80464$
7. Median $=5$

Mean=3.75
Mode $=0$ and 5
sample standard deviation $=3.1112$
population standard deviation $=3.07205$
population variance $=9.43749$
8. use Chebyshev's inequality
solve for k :
$108=75+k * 15$
$33=15 k$
$k=2.2$
$P(42 \leq X \leq 108) \geq 1-\frac{1}{2.2^{2}}=0.7934$
9. (a) normalcdf $(8,1 \mathrm{E} 99,10,3)=0.7475$
(b) 0
(c) $\operatorname{normalcdf}(7,12,10,3)=0.5889$
(d) $\mathrm{n}=200, \mathrm{p}=0.5889$, $\mathrm{r}=44,45, \ldots, 57$
$\operatorname{binomcdf}(200,0.5889,57)-\operatorname{binomcdf}(200,0.5889,43)$
10. $\mu-2.1 \sigma<x<\mu+2.1 \sigma$ $78.5<x<141.5$
11. (a) $\mathrm{X}=1,2,3, \ldots, 11$
(b) $\frac{10}{18} * \frac{8}{17}$
12. inverse norm needs the area to the left of the cutoff. invnorm $(0.88,15,2.3)=17.702469$ minutes
13. (a) Draw a tree to get the probabilities.

x	-1	2	3	4
prob	$\frac{1}{12}+\frac{1}{2}=\frac{7}{12}$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{12}$

(b) 0.666666
(c) $0.666666 * 10,000=6666.66$
profit of $\$ 6,666.66$

