Given $\mathbf{a} = \langle 2, -2, 1 \rangle$ and $|\mathbf{b}| = 4$, what is the maximum value of $|\mathbf{a} \times \mathbf{b}|$.

$$a \times b = (|a||b| \sin \theta) n$$
 θ is angle between $\overline{a} + \overline{b}$
 c_{nd} n is a unit vector.
 $|a \times b| = |a||b| \sin \theta$ so may is when $\sin \theta = 1$ is
 $\theta = \frac{\pi}{2}$

$$|6| = \sqrt{1} + 1 = \sqrt{9} = 3$$

May value is 3(4)=12 as long as the angle between \$\$\$\$\$ is \$\bar{I}\$_2 Find a vector that is orthogonal to the plane 2x + 3y + 5z = 30

In section 12.5 we will learn an easier mathed.
Lets find 2 vectors in the plane. is need 3 points
That are all not include.

$$A(0,0,6) \qquad AB = 2 \ 0, 10, -6>$$

$$B(0,10,0) \qquad AC = < 15, 0, -6>$$

$$C(15,0,0)$$

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} i & j & K \\ 0 & 10 & -6 \\ 15 & 0 & -6 \end{vmatrix}$$

$$= (10(-6) - (0)(-6))i - (0(-6) - (15)(-6))j + ((0(0) - 15(N)))/(10)) = (-60) - 150>$$

$$Dry vectors that is a scalar multiple of 2-60, -90, -150>$$

$$W ill be a correct answer.$$

Problem 3

Find the volume of the parallelepiped determined by the vectors $\langle 1,0,6\rangle,~\langle 2,3,-8\rangle,$ and $\langle 8,-5,6\rangle$

$$A \cdot (B \times C) = \begin{vmatrix} 1 & 0 & 6 \\ 2 & 3 & -8 \\ 5 & -5 & 6 \end{vmatrix}$$

= 18 + 0 + (-60) - 144 - 40 - 0
= -226
Volume = | A \cdot (B \times C) | = 226

Problem 4

Are these vectors co-planer. Justify your answer.

$$a = 4i - 7j + k$$

$$b = -i + 4j + 2k$$

$$c = -i + 2j$$

$$a \cdot (b \times c) = \begin{vmatrix} 4 & -7 & 1 \\ -1 & 4 & 2 \\ -1 & 2 & 0 \end{vmatrix} = 0 + 14 + (-2) - (-4) - (16) - (0)$$

$$= 0$$

$$= 0$$

Since $a \cdot (b \times c) = 0$ These vectors can all like
on the same plane, yes they are
 $C_0 - planer$