The exam consists of 5 questions. The point value for a question is written next to the question number. There is a total of 100 points. No aids are permitted.

1. [20] (a) State the completeness axiom for \(\mathbb{R} \).

(b) Give an example of a nonempty bounded subset of \(\mathbb{R} \) which contains its infimum but does not contain its supremum.
(c) Let A and B be nonempty bounded subsets of \mathbb{R}. Define

$$A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

Prove that $\sup(A + B) = \sup A + \sup B$.
2. [25] (a) State the definition of the limit of a sequence in \mathbb{R}.

(b) Give an example of a bounded sequence in \mathbb{R} that does not converge.

(c) Give an example of a sequence $\{x_n\}_{n=1}^\infty$ in \mathbb{R} which is not bounded above and has a subsequence $\{x_{n_k}\}_{k=1}^\infty$ that converges to 1 as $k \to \infty$.

(d) Compute $\lim_{n \to \infty} \frac{n^4 + 3n - 1}{3n^4 + n^2}$.
(e) Let \(\{x_n\}_{n=1}^{\infty} \) and \(\{y_n\}_{n=1}^{\infty} \) be sequences in \(\mathbb{R} \) such that \(\lim_{n \to \infty} x_n = 2 \) and \(\lim_{n \to \infty} y_n = 1 \). Prove directly from the definition of a limit that

\[
\lim_{n \to \infty} (x_n + 2y_n) = 4.
\]
3. [20] (a) State what it means for a set to be countable.

(b) Let $m \in \mathbb{N}$, and let A be the set of all open intervals in \mathbb{R} of the form (m, n) for some integer $n > m$. Show that A is countable.

(c) Let B be the set of all open intervals in \mathbb{R} of the form (m, n) for some $m, n \in \mathbb{N}$ with $m < n$. Show that B is countable.
4. [15] (a) Give an example of a function $f : X \to Y$ and a set $E \subseteq X$ such that
$f^{-1}(f(E)) \neq E$.

(b) Let E be a nonempty bounded subset of \mathbb{R} that does not contain its supremum. Show that there exists an injective function $f : \mathbb{N} \to E$.
5. [20] (a) State the well-ordering principle.

(b) Prove that \(n < 2^n \) for all \(n \in \mathbb{N} \).

(c) Let \(\{x_n\}_{n=1}^{\infty} \) be a bounded sequence in \(\mathbb{R} \). Prove directly from the definition of a limit that \(x_n/2^n \to 0 \) as \(n \to \infty \).