**Instructor: **David Kerr
**Office:** Milner 121

**Office hours:** MW 10:30-12:00

**Lectures:** MWF 9:10-10:00, Blocker 148

**Course description:**
Axioms of the real number system; point set theory of the real number line; compactness,
completeness and connectedness; continuity and uniform continuity; sequences, series;
theory of Riemann integration.

**Textbook:**
William R. Wade.

*An Introduction to Analysis*, fourth edition. Published by Prentice Hall.

**Assignments**

*Assignment #1* (due February 1): **1.2:** 0, 3, 4(a,c), 7(a,b), 10

*Assignment #2* (due February 8): **1.3:** 0(a,c), 1(a,e) (just state the answer), 6, 7, 8;
**1.4:** 2(b,d), 4(a,c)

*Assignment #3* (not to be handed in): **1.5:** 0(b,c,d), 2(a,b,c), 5, 6; **1.6:** 0, 1, 3, 6

*Assignment #4* (due February 22): **2.1:** 0, 1(c), 2(a), 7; **2.2:** 0(a), 1(a), 2(b), 3(b)

*Assignment #5* (due February 29): **2.3:** 0, 3, 7; **2.4:** 0, 3(b), 4

*Assignment #6* (due March 9): **3.1:** 0(c,d), 1(a,d), 3(a), 6; **3.2:** 0(a,c), 1(b), 6

*Assignment #7* (due March 21): **3.3:** 0(a,c), 1(a,b), 2(a), 4; **3.4:** 0(a,d), 1(b), 4

*Assignment #8* (not to be handed in): **4.1:** 0, 1, 2, 3, 4, 6; **4.2:** 0, 1, 2

*Assignment #9* (due April 4): **4.3:** 0(a,b), 1(c), 2, 4, 9; **4.4:** 1, 3, 5(a,d)

*Assignment #10* (due April 11): **4.5:** 0, 1, 7

*Assignment #11* (due April 25): **5.1:** 0(a), 2(b), 3, 4; **5.2:** 0(b), 2(a,b), 6;
**5.3:** 0(a,b), 1(b,c)

*Assignment #12* (not to be handed in): **5.4:** 2, 3, 4, 6; **5.4:** 0, 1, 2, 4, 5, 6, 7

**Exams**

*Final exam*: May 4, 10:00-12:00

Practice (ignore #1,3,5,7,9,10)