Abstract: Given a Borel probability measure μ on \mathbb{R}^d, a number $r \in (0, +\infty)$ and a natural number $n \in \mathbb{N}$, the nth quantization error of order r for μ, is defined by

$$
e_{n,r} = \inf \{ \left(\int d(x, \alpha)^r d\mu(x) \right)^{\frac{1}{r}} : \alpha \subset \mathbb{R}^d, \text{card}(\alpha) \leq n \},$$

where $d(x, \alpha)$ denotes the distance from the point x to the set α with respect to a given norm $\| \cdot \|$ on \mathbb{R}^d. Note that if $\int \| x \|^r d\mu(x) < \infty$ then there is some set α for which the infimum is achieved. The upper and lower quantization dimensions for μ of order r are defined by

$$
\overline{D}_r(\mu) := \limsup_{n \to \infty} \frac{\log n}{-\log e_{n,r}}; \quad \underline{D}_r(\mu) = \liminf_{n \to \infty} \frac{\log n}{-\log e_{n,r}}.
$$

If $\overline{D}_r(\mu)$ and $\underline{D}_r(\mu)$ coincide, we call the common value the quantization dimension of μ of order r and is denoted by $D_r(\mu)$. One sees that the quantization dimension is actually a function $r \mapsto D_r$ which measures the asymptotic rate at which $e_{n,r}$ goes to zero. If D_r exists, then asymptotically

$$\log e_{n,r} \sim \log \left(\frac{1}{n} \right)^{1/D_r}.$$

Let $P = [p_{ij}]_{1 \leq i,j \leq N}$ be an $N \times N$ irreducible row stochastic matrix and $X \subset \mathbb{R}^d$ be a compact set such that $X = \text{cl}(\text{int}X)$. To each p_{ij} if $p_{ij} > 0$, let us associate a contractive similitude S_{ij} mapping X into X with the similarity ratio s_{ij} ($0 < s_{ij} < 1$). Then the collection $\{X, S_{ij}, p_{ij} > 0, 1 \leq i,j \leq N\}$ is called a recurrent iterated function system (RIFS) of similarity mappings. Let us now consider the ergodic Markov measure ν on the coding space, and take its image measure $\mu := \nu \circ \pi^{-1}$ on the recurrent self-similar set via the coding map π. I will talk about the quantization dimension function for the probability measure μ, and the relationship between the quantization dimension function and the temperature function of the thermodynamic formalism that arises in multifractal analysis.