Entropy in Measurable Dynamics

Lewis Bowen

East Coast Operator Algebras Symposium,
October 2009
Notation

Let \((X, \mu)\) be a standard probability space.
Let (X, μ) be a standard probability space.

Let G be a countable discrete group acting by measure-preserving transformations on (X, μ).
Notation

Let \((X, \mu)\) be a standard probability space.

Let \(G\) be a countable discrete group acting by measure-preserving transformations on \((X, \mu)\).

The triple \((G, X, \mu)\) is a \textit{dynamical system}.

Main Problem: Classify systems up to isomorphism.
Notation

Let \((X, \mu)\) be a standard probability space.

Let \(G\) be a countable discrete group acting by measure-preserving transformations on \((X, \mu)\).

The triple \((G, X, \mu)\) is a \textit{dynamical system}.

Two systems \((G, X_1, \mu_1)\) and \((G, X_2, \mu_2)\) are \textit{isomorphic} if there exists a measure-space isomorphism \(\phi : X_1 \to X_2\) with \(\phi(gx) = g\phi(x)\) for a.e. \(x \in X_1\) and for all \(g \in G\).

Main Problem: Classify systems up to isomorphism.
Bernoulli shifts

- Let \((K, \kappa)\) be a standard probability space.
Bernoulli shifts

- Let \((K, \kappa)\) be a standard probability space.

- \(K^G = \{x : G \to K\}\).
Bernoulli shifts

- Let \((K, \kappa)\) be a standard probability space.

- \(K^G = \{x : G \to K\}\).

- \(\kappa^G\) is the product measure on \(K^G\).
Bernoulli shifts

- Let \((K, \kappa)\) be a standard probability space.

- \(K^G = \{x : G \to K\}\).

- \(\kappa^G\) is the product measure on \(K^G\).

- \(G\) acts on \(K^G\) by shifting. \((gx)(f) = x(g^{-1}f)\) for all \(x \in K^G, g, f \in G\).
Bernoulli shifts

- Let (K, κ) be a standard probability space.

- $K^G = \{ x : G \to K \}$.

- κ^G is the product measure on K^G.

- G acts on K^G by shifting. $(gx)(f) = x(g^{-1}f)$ for all $x \in K^G, g, f \in G$.

- (G, K^G, κ^G) is the Bernoulli shift over G with base space (K, κ).
von Neumann’s question

If \(|K| = n\) and \(\kappa\) is the uniform probability measure on \(K\), then \((G, K^G, \kappa^G)\) is the full \(n\)-shift over \(G\).

von Neumann’s question: Is the full 2-shift over \(\mathbb{Z}\) isomorphic to the full 3-shift over \(\mathbb{Z}\)?
von Neumann’s question

If $|K| = n$ and κ is the uniform probability measure on K then (G, K^G, κ^G) is the full n-shift over G.
von Neumann’s question

If $|K| = n$ and κ is the uniform probability measure on K then (G, K^G, κ^G) is the full n-shift over G.

von Neumann’s question: Is the full 2-shift over \mathbb{Z} isomorphic to the full 3-shift over \mathbb{Z}?
Ideas from Information Theory

Let \(x \in X \) be a point unknown to us. Let \(E \subset X \).

\[I(E) = I(\mu(E)) \]

\(I(t) \) for \(0 \leq t \leq 1 \) should satisfy:

1. \(I(t) \geq 0 \)
2. \(I(t) \) is continuous.
3. \(I(ts) = I(t) + I(s) \).

So \(I(t) = -\log_b(t) \) for some \(b > 1 \).
Ideas from Information Theory

Let \(x \in X \) be a point unknown to us. Let \(E \subset X \).

Goal: quantify the “amount of information” we gain by being told that \(x \in E \).
Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the “amount of information” we gain by being told that $x \in E$.

This amount, denoted $I(E)$, should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$.

$I(t)$ for $0 \leq t \leq 1$ should satisfy:

1. $I(t) \geq 0$.
2. $I(t)$ is continuous.
3. $I(ts) = I(t) + I(s)$.

So $I(t) = -\log_b(t)$ for some $b > 1$.

Lewis Bowen (Texas A&M)
Ideas from Information Theory

Let $x \in X$ be a point unknown to us. Let $E \subset X$.

Goal: quantify the “amount of information” we gain by being told that $x \in E$.

This amount, denoted $I(E)$, should depend only on $\mu(E)$. So write $I(E) = I(\mu(E))$.

$I(t)$ for $0 \leq t \leq 1$ should satisfy:

1. $I(t) \geq 0$.
2. $I(t)$ is continuous.
3. $I(ts) = I(t) + I(s)$.

So $I(t) = -\log_b(t)$ for some $b > 1$.
Entropy

An *observable* is a measurable map $\phi : X \rightarrow A$ into a finite (or countable) set A.

The **Shannon entropy** of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$H(\phi) = -\sum_{a \in A} \mu(\phi^{-1}(a)) \log(\mu(\phi^{-1}(a))).$$

If $\phi : X \rightarrow A$ and $\psi : X \rightarrow B$ are two observables then their join is defined by

$$\phi \lor \psi(x) := (\phi(x), \psi(x)) \in A \times B.$$

Let $T : X \rightarrow X$ be measure-preserving. The **entropy rate** of ϕ w.r.t. T is:

$$h(T, \phi) = \lim_{n \rightarrow \infty} \frac{1}{2^{n+1}} H(n \lor \bigcup_{i=-n}^{n-1} \phi \circ T^{-i}).$$
Entropy

An \textit{observable} is a measurable map \(\phi : X \to A \) into a finite (or countable) set \(A \).

The \textit{Shannon entropy} of \(\phi \) is the average amount of information one gains by learning the value of \(\phi \). I.e.,

\[
H(\phi) = - \sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a)) \right).
\]
Entropy

An observable is a measurable map $\phi : X \to A$ into a finite (or countable) set A.

The Shannon entropy of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$H(\phi) = - \sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a)) \right).$$

If $\phi : X \to A$ and $\psi : X \to B$ are two observables then their join is defined by $\phi \vee \psi(x) := (\phi(x), \psi(x)) \in A \times B$.

Entropy

An observable is a measurable map $\phi : X \to A$ into a finite (or countable) set A.

The *Shannon entropy* of ϕ is the average amount of information one gains by learning the value of ϕ. I.e.,

$$H(\phi) = - \sum_{a \in A} \mu(\phi^{-1}(a)) \log \left(\mu(\phi^{-1}(a)) \right).$$

If $\phi : X \to A$ and $\psi : X \to B$ are two observables then their join is defined by $\phi \vee \psi(x) := (\phi(x), \psi(x)) \in A \times B$.

Let $T : X \to X$ be measure-preserving. The *entropy rate* of ϕ w.r.t T is:

$$h(T, \phi) = \lim_{n \to \infty} \frac{1}{2n + 1} H \left(\bigvee_{i=-n}^{n} \phi \circ T^i \right).$$
Let \((G, X, \mu)\) be a system and \(\phi : X \to A\) an observable.
Let \((G, X, \mu)\) be a system and \(\phi : X \to A\) an observable.

Define \(\Phi : X \to A^G\) by \(\Phi(x) := g \mapsto \phi(g^{-1}x)\).

\(\phi\) is a generator if \(\Phi\) is an isomorphism from \((G, X, \mu)\) to \((G, A^G, \Phi^*\mu)\).
Let \((G, X, \mu)\) be a system and \(\phi : X \to A\) an observable.

Define \(\Phi : X \to A^G\) by \(\Phi(x) := g \mapsto \phi(g^{-1}x)\).

\(\phi\) is a generator if \(\Phi\) is an isomorphism from \((G, X, \mu)\) to \((G, A^G, \Phi_* \mu)\).
Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)

Let $T : X \to X$ be an automorphism of (X, μ). If ϕ and ψ are finite-entropy generators for $(\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)$ then $h(T, \phi) = h(T, \psi)$.

So $h((\mathbb{Z}, X, \mu) := h(T, \phi)$ is the entropy of the action.

Theorem (Sinai, 1959)

If ϕ is any finite-entropy observable then $h(T, \phi) \leq h((\mathbb{Z}, X, \mu)$. Hence we may define the entropy of (\mathbb{Z}, X, μ) to be $\sup \phi h(T, \phi)$.
Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)

Let \(T : X \to X \) be an automorphism of \((X, \mu)\). If \(\phi \) and \(\psi \) are finite-entropy generators for \((\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)\) then
\[
h(T, \phi) = h(T, \psi).
\]
So \(h(\mathbb{Z}, X, \mu) := h(T, \phi) \) is the entropy of the action.
Kolmogorov’s entropy

Theorem (Kolmogorov, 1958)

Let \(T : X \rightarrow X \) be an automorphism of \((X, \mu)\). If \(\phi \) and \(\psi \) are finite-entropy generators for \((\mathbb{Z}, X, \mu) = (\langle T \rangle, X, \mu)\) then

\[
h(T, \phi) = h(T, \psi). \]

So \(h(\mathbb{Z}, X, \mu) := h(T, \phi) \) is the entropy of the action.

Theorem (Sinai, 1959)

If \(\phi \) is any finite-entropy observable then \(h(T, \phi) \leq h(\mathbb{Z}, X, \mu) \). Hence we may define the entropy of \((\mathbb{Z}, X, \mu)\) to be \(\sup_{\phi} h(T, \phi) \).
Bernoulli shifts

For a probability space \((K, \kappa)\), define the *base entropy* by

\[
H(K, \kappa) := - \sum_{k \in K} \kappa(k) \log \left(\kappa(k) \right).
\]
Bernoulli shifts

For a probability space \((K, \kappa)\), define the base entropy by

\[
H(K, \kappa) := - \sum_{k \in K} \kappa(k) \log(\kappa(k)).
\]

A calculation reveals:

\[
h(\mathbb{Z}, K^\mathbb{Z}, \kappa^\mathbb{Z}) = H(K, \kappa).
\]
Bernoulli shifts

For a probability space \((K, \kappa)\), define the base entropy by

\[
H(K, \kappa) := -\sum_{k \in K} \kappa(k) \log \kappa(k).
\]

A calculation reveals:

\[
h(\mathbb{Z}, K^\mathbb{Z}, \kappa^\mathbb{Z}) = H(K, \kappa).
\]

Theorem (Kolmogorov, 1958)

If \((\mathbb{Z}, K^\mathbb{Z}, \kappa^\mathbb{Z})\) is isomorphic to \((\mathbb{Z}, L^\mathbb{Z}, \lambda^\mathbb{Z})\) then \(H(K, \kappa) = H(L, \lambda)\). So the full 2-shift is not isomorphic to the full 3-shift.
Questions

- Does the converse hold?

- What if \mathbb{Z} is replaced with some other group G?
The Converse

A group \(G\) is Ornstein if whenever \((K, \kappa)\) and \((L, \lambda)\) are two standard probability spaces with \(H(\kappa) = H(\lambda)\) then \((G, K, G, \kappa, G)\) is isomorphic to \((G, L, G, \lambda, G)\). No finite group is Ornstein [Ornstein, 1970]. Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987]. If \(G\) contains an Ornstein subgroup \(H\) then \(G\) is Ornstein [Stepin, 1975]. Is every countably infinite group Ornstein?
The Converse

Definition

A group G is **Ornstein** if whenever (K, κ), (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G).

No finite group is Ornstein [Ornstein, 1970].

Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].

If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].

Is every countably infinite group Ornstein?
The Converse

Definition

A group G is *Ornstein* if whenever (K, κ), (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G).

- No finite group is Ornstein.
The Converse

Definition

A group \(G \) is **Ornstein** if whenever \((K, \kappa), (L, \lambda)\) are two standard probability spaces with \(H(\kappa) = H(\lambda) \) then \((G, K^G, \kappa^G)\) is isomorphic to \((G, L^G, \lambda^G)\).

- No finite group is Ornstein.
- \(\mathbb{Z} \) is Ornstein [Ornstein, 1970].
The Converse

Definition

A group G is **Ornstein** if whenever (K, κ), (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G).

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
The Converse

Definition

A group G is **Ornstein** if whenever (K, κ), (L, λ) are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G).

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].
The Converse

Definition

A group G is **Ornstein** if whenever $(K, \kappa), (L, \lambda)$ are two standard probability spaces with $H(\kappa) = H(\lambda)$ then (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G).

- No finite group is Ornstein.
- \mathbb{Z} is Ornstein [Ornstein, 1970].
- Infinite amenable groups are Ornstein [Ornstein-Weiss, 1987].
- If G contains an Ornstein subgroup H then G is Ornstein [Stepin, 1975].
- Is every countably infinite group Ornstein?
Classification

Theorem (Ornstein, 1970)

Bernoulli shifts over \mathbb{Z} are completely classified by their entropy.
Classification

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?
Classification

Classification

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).
Classification

Theorem

If G is infinite and amenable then Bernoulli shifts over G are completely classified by their entropy (which equals their base measure entropy).

What if G is nonamenable?
Factor maps

Definition

Let \((G, X, \mu), (G, Y, \nu)\) be two systems and \(\phi : X \to Y\) a measurable map with \(\phi_* \mu = \nu\), \(\phi(gx) = g\phi(x)\) for a.e. \(x \in X\) and all \(g \in G\). Then \(\phi\) is a **factor map** from \((G, X, \mu)\) to \((G, Y, \nu)\).
Factor maps

Definition

Let \((G, X, \mu), (G, Y, \nu)\) be two systems and \(\phi : X \to Y\) a measurable map with \(\phi_*\mu = \nu, \phi(gx) = g\phi(x)\) for a.e. \(x \in X\) and all \(g \in G\). Then \(\phi\) is a **factor map** from \((G, X, \mu)\) to \((G, Y, \nu)\).

Let \(G\) be amenable.
Factor maps

Definition

Let (G, X, μ), (G, Y, ν) be two systems and $\phi : X \to Y$ a measurable map with $\phi_* \mu = \nu$, $\phi(gx) = g\phi(x)$ for a.e. $x \in X$ and all $g \in G$. Then ϕ is a **factor map** from (G, X, μ) to (G, Y, ν).

Let G be amenable.

- Entropy is nonincreasing under factor maps.
Factor maps

Definition

Let \((G, X, \mu), (G, Y, \nu)\) be two systems and \(\phi : X \to Y\) a measurable map with \(\phi_*\mu = \nu\), \(\phi(gx) = g\phi(x)\) for a.e. \(x \in X\) and all \(g \in G\). Then \(\phi\) is a factor map from \((G, X, \mu)\) to \((G, Y, \nu)\).

Let \(G\) be amenable.

- Entropy is nonincreasing under factor maps.
- The full \(n\)-shift over \(G\) has entropy \(\log(n)\).
Factor maps

Definition

Let \((G, X, \mu), (G, Y, \nu)\) be two systems and \(\phi : X \to Y\) a measurable map with \(\phi_* \mu = \nu\), \(\phi(gx) = g\phi(x)\) for a.e. \(x \in X\) and all \(g \in G\). Then \(\phi\) is a factor map from \((G, X, \mu)\) to \((G, Y, \nu)\).

Let \(G\) be amenable.

- Entropy is nonincreasing under factor maps.
- The full \(n\)-shift over \(G\) has entropy \(\log(n)\).

\(\implies\) the full 2-shift over \(G\) cannot factor onto the full 4-shift over \(G\).
The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

If $F = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over F factors onto the full 4-shift over F.

Define $\phi : (\mathbb{Z}/2\mathbb{Z})^F \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^F$ by $\phi(x)(g) = (x(g) + x(ga), x(g) + x(gb))$.

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 15 / 42
The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

If $F = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over F factors onto the full 4-shift over F.

Define $\phi : \left(\mathbb{Z}/2\mathbb{Z} \right)^F \to \left(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \right)^F$ by
The Ornstein-Weiss Example

Theorem (Ornstein-Weiss, 1987)

If $\mathbb{F} = \langle a, b \rangle$ is the rank 2 free group then the full 2-shift over \mathbb{F} factors onto the full 4-shift over \mathbb{F}.

Define $\phi : (\mathbb{Z}/2\mathbb{Z})^\mathbb{F} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^\mathbb{F}$ by

$$\phi(x)(g) = \left(x(g) + x(ga), x(g) + x(gb)\right).$$
Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.
Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

If G is any nonamenable group then there is some $m > 0$ such that the 2^m-shift over G factors onto every Bernoulli shift over G.

More Counterexamples

Theorem (Karen Ball, 2005)

If G has infinitely many ends then the 2-shift over G factors onto every Bernoulli shift over G.

If G is any nonamenable group then there is some $m > 0$ such that the 2^m-shift over G factors onto every Bernoulli shift over G.

Theorem

If G contains a nonabelian free subgroup then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G.
New Results

Theorem

If G is a sofic group (e.g., a linear group) then Kolmogorov’s direction holds. I.e., if (G, K^G, κ^G) is isomorphic to (G, L^G, λ^G) then $H(K, \kappa) = H(L, \lambda)$.

Lewis Bowen (Texas A&M)
The case $G = \mathbb{Z}$.

Let $T : X \rightarrow X$ be an automorphism of (X, μ).
The case $G = \mathbb{Z}$.

Let $T : X \to X$ be an automorphism of (X, μ).

Let $\phi : X \to A$ be an observable.
The case \(G = \mathbb{Z} \).

Let \(T : X \to X \) be an automorphism of \((X, \mu)\).

Let \(\phi : X \to A \) be an observable.

Let \(x \in X \) be a typical element and consider the sequence
\((\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)\).
The case $G = \mathbb{Z}$.

Let $T : X \to X$ be an automorphism of (X, μ).

Let $\phi : X \to A$ be an observable.

Let $x \in X$ be a typical element and consider the sequence
$(\ldots, \phi(T^{-1}x), \phi(x), \phi(Tx), \ldots)$.

The idea: For $n > 0$, count the number of sequences (a_1, a_2, \ldots, a_n) with elements $a_i \in A$ that approximate the above sequence.
Local statistics

Let $W \subset \mathbb{Z}$ be finite. (W stands for window)
Local statistics

Let $W \subset \mathbb{Z}$ be finite. (W stands for window)

Define $\phi^W : X \to A^W = A \times A \times \ldots \times A$ by

$$\phi^W(x) := (\phi(T^w x))_{w \in W}.$$
Local statistics

Let \(W \subset \mathbb{Z} \) be finite. (\(W \) stands for *window*)

Define \(\phi^W : X \rightarrow A^W = A \times A \times \ldots \times A \) by

\[
\phi^W(x) := (\phi(T^w x))_{w \in W}.
\]

\(\phi_*^W \mu \) is a measure on \(A^W \) that encodes the local statistics.
Sequences

Let $\psi : \{1, \ldots, n\} \to A$ be a map.
Sequences

Let $\psi : \{1, \ldots, n\} \to A$ be a map.

$\psi^W : \{1, \ldots, n\} \to A^W$ is defined by

$$\psi^W(j) = (\psi(j + w))_{w \in W}.$$
Sequences

Let $\psi : \{1, \ldots, n\} \to A$ be a map.

$\psi^W : \{1, \ldots, n\} \to A^W$ is defined by

$$\psi^W(j) = (\psi(j + w))_{w \in W}.$$

(Define it arbitrarily if $j + w \notin \{1, \ldots, n\}$)
Sequences

Let $\psi : \{1, \ldots, n\} \to A$ be a map.

$\psi^W : \{1, \ldots, n\} \to A^W$ is defined by

$$\psi^W(j) = (\psi(j + w))_{w \in W}.$$

(define it arbitrarily if $j + w \not\in \{1, \ldots, n\}$)

Let u be the uniform measure on $\{1, \ldots, n\}$. $\psi^W_* u$ is a measure on A^W that encodes the local statistics of the sequence $(\psi(1), \ldots, \psi(n)) \in A^n$.
Let $d_W(\phi, \psi)$ be the l^1-distance between $\phi_*^W \mu$ and $\psi_*^W u$:
Entropy as a growth rate

Let $d_W(\phi, \psi)$ be the l^1-distance between $\phi_*^W \mu$ and $\psi_*^W u$:

$$d_W(\phi, \psi) := \sum_{\alpha \in A^W} \left| \phi_*^W \mu(\alpha) - \psi_*^W u(\alpha) \right|.$$
Entropy as a growth rate

Let $d_W(\phi, \psi)$ be the l^1-distance between $\phi_*^W \mu$ and $\psi_*^W u$:

$$d_W(\phi, \psi) := \sum_{\alpha \in A^W} |\phi_*^W \mu(\alpha) - \psi_*^W u(\alpha)|.$$

Theorem

$$h(T, \phi) = \inf_{W \subset \mathbb{Z}} \inf_{\epsilon > 0} \lim_{n \to \infty} \frac{1}{n} \log \left| \left\{ \psi : \{1, \ldots, n\} \to A : d_W(\phi, \psi) < \epsilon \right\} \right|.$$
Sofic Groups

Let $\text{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.
Sofic Groups

Let $\text{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.

Let G be a group and $\sigma : G \to \text{Sym}(m)$ a map.
Sofic Groups

Let $\text{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.

Let G be a group and $\sigma : G \to \text{Sym}(m)$ a map.

σ is not necessarily a homomorphism!
Let \(\text{Sym}(m) \) be the symmetric group on \(\{1, \ldots, m\} \).

Let \(G \) be a group and \(\sigma : G \to \text{Sym}(m) \) a map.

\(\sigma \) is not necessarily a homomorphism!

For \(W \subset G \), let \(\mathcal{G}(W) \subset \{1, \ldots, m\} \) be the set of all \(p \) such that

\[
\sigma(fg)p = \sigma(f)\sigma(g)p \quad \forall f, g \in W \text{ with } fg \in W,
\]

\[
\sigma(f)p \neq \sigma(g)p \iff f \neq g \in W.
\]
Sofic Groups

Let $\text{Sym}(m)$ be the symmetric group on $\{1, \ldots, m\}$.

Let G be a group and $\sigma : G \to \text{Sym}(m)$ a map.

σ is not necessarily a homomorphism!

For $W \subset G$, let $\mathcal{G}(W) \subset \{1, \ldots, m\}$ be the set of all p such that

\[\sigma(fg)p = \sigma(f)\sigma(g)p \quad \forall f, g \in W \text{ with } fg \in W, \]
\[\sigma(f)p \neq \sigma(g)p \iff f \neq g \in W. \]

σ is a (W, ϵ)-approximation to G if $|\mathcal{G}(W)| \geq (1 - \epsilon)m$.
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a sofic approximation if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$).
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a **sofic approximation** if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$).

G is **sofic** if there exists a sofic approximation to G.

Lewis Bowen (Texas A&M) Entropy in Measurable Dynamics 23 / 42
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a sofic approximation if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$).

G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^\infty$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a **sofic approximation** if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^\infty \bigcap_{i=n}^\infty W_i = G$).

G is **sofic** if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a **sofic approximation** if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$).

G is **sofic** if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
Sofic Groups

A sequence $\Sigma = \{\sigma_i\}_{i=1}^{\infty}$ of maps $\sigma_i : G \to \text{Sym}(m_i)$ is a sofic approximation if σ_i is an (W_i, ϵ_i)-approximation with $\epsilon_i \to 0$ and $W_i \to G$ (i.e., $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G$).

G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)
- (Gromov, 1999), (Weiss, 2000).
- Residually finite groups are sofic. Hence all linear groups are sofic.
- Amenable groups are sofic.
Sofic Groups

A sequence \(\Sigma = \{\sigma_i\}_{i=1}^{\infty} \) of maps \(\sigma_i : G \to \text{Sym}(m_i) \) is a sofic approximation if \(\sigma_i \) is an \((W_i, \epsilon_i)\)-approximation with \(\epsilon_i \to 0 \) and \(W_i \to G \) (i.e., \(\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} W_i = G \)).

G is sofic if there exists a sofic approximation to G.

- LEF groups (Gordon-Vershik)

- (Gromov, 1999), (Weiss, 2000).

- Residually finite groups are sofic. Hence all linear groups are sofic.

- Amenable groups are sofic.

- Is every countable group sofic?
Entropy for Sofic Groups

Let (G, X, μ) be a system,
Let \((G, X, \mu)\) be a system,

\[\Sigma = \{\sigma_i\} \]

be a sofic approximation to \(G\) where \(\sigma_i : G \rightarrow \text{Sym}(m_i)\),
Entropy for Sofic Groups

Let \((G, X, \mu)\) be a system,

\[\Sigma = \{\sigma_i\}\] be a sofic approximation to \(G\) where \(\sigma_i : G \to \text{Sym}(m_i)\),

\[\phi : X \to A\] be a measurable map into a finite set.
Entropy for Sofic Groups

Let \((G, X, \mu)\) be a system,

\[\Sigma = \{\sigma_i\}\] be a sofic approximation to \(G\) where \(\sigma_i : G \to \text{Sym}(m_i)\),

\(\phi : X \to A\) be a measurable map into a finite set.

The idea: Count the number of observables \(\psi : \{1, \ldots, m_i\} \to A\) so that \((G, [m_i], u_i, \psi)\) approximates \((G, X, \mu, \phi)\).
Approximating

If \(W \subset G \) is finite, let \(\phi^W : X \rightarrow A^W \) be the map \(\phi^W(x) := \left(\phi(wx) \right)_{w \in W} \).
Approximating

If $W \subset G$ is finite, let $\phi^W : X \to A^W$ be the map $\phi^W(x) := \left(\phi(wx) \right)_{w \in W}$.

Given $\psi : \{1, \ldots, m_i\} \to A$, $\psi^W : \{1, \ldots, m_i\} \to A^W$ is the map

$$\psi^W(j) := \left(\psi(\sigma(w)j) \right)_{w \in W}.$$
Approximating

If $W \subset G$ is finite, let $\phi^W: X \to A^W$ be the map $\phi^W(x) := \left(\phi(wx)\right)_{w \in W}$.

Given $\psi: \{1, \ldots, m_i\} \to A$, $\psi^W: \{1, \ldots, m_i\} \to A^W$ is the map

$\psi^W(j) := \left(\psi(\sigma(w)j)\right)_{w \in W}$.

Let $d_W(\phi, \psi)$ be the l^1-distance between $\phi^W_* \mu$ and $\psi^W_* u$.
Entropy for sofic groups

\[h(\Sigma, \phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \log \left| \left\{ \psi : \{1, \ldots, m_i\} \to A : d_W(\phi, \psi) \leq \epsilon \right\} \right| / m_i. \]
Entropy for sofic groups

\[h(\Sigma, \phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \log \left| \left\{ \psi : \{1, \ldots, m_i\} \to A : d_W(\phi, \psi) \leq \epsilon \right\} \right| \frac{m_i}{m_i}. \]

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.
Entropy for sofic groups

\[h(\Sigma, \phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \frac{\log |\{\psi : \{1, \ldots, m_i\} \to A : d_W(\phi, \psi) \leq \epsilon\}|}{m_i}. \]

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.

Theorem

If \(G \) is amenable then \(h(\Sigma, G, X, \mu) \) is the classical entropy of \((G, X, \mu) \).
Entropy for sofic groups

\[h(\Sigma, \phi) := \inf_{W \subset G} \inf_{\epsilon > 0} \limsup_{i \to \infty} \log \left| \{ \psi : \{1, \ldots, m_i\} \to A : d_W(\phi, \psi) \leq \epsilon \} \right| \frac{1}{m_i} \]

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.

Theorem

If \(G \) is amenable then \(h(\Sigma, G, X, \mu) \) is the classical entropy of \((G, X, \mu) \).

Theorem

\[h(\Sigma, G, K^G, \kappa^G) = H(K, \kappa) \]
Proof sketch

Theorem

If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number.
Proof sketch

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.

Two observables \(\phi : X \to A, \psi : X \to B \) are equivalent if the partitions \(\{ \phi^{-1}(a) : a \in A \} \), \(\{ \psi^{-1}(b) : b \in B \} \) agree up to measure zero.
Proof sketch

Theorem

If ϕ_1 and ϕ_2 are generating then $h(\Sigma, \phi_1) = h(\Sigma, \phi_2)$. So let $h(\Sigma, G, X, \mu)$ be this common number.

Two observables $\phi : X \to A$, $\psi : X \to B$ are **equivalent** if the partitions \(\{\phi^{-1}(a) : a \in A\} \), \(\{\psi^{-1}(b) : b \in B\} \) agree up to measure zero.

Let \mathcal{P} be the set of all equivalence classes of observables ϕ with $H(\phi) < \infty$.
Proof sketch

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.

Two observables \(\phi : X \to A, \psi : X \to B \) are equivalent if the partitions \(\{\phi^{-1}(a) : a \in A\}, \{\psi^{-1}(b) : b \in B\} \) agree up to measure zero.

Let \(\mathcal{P} \) be the set of all equivalence classes of observables \(\phi \) with \(H(\phi) < \infty \).

Definition (Rohlin distance)

\[
d(\phi, \psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi|\psi) + H(\psi|\phi).
\]
Proof sketch

Theorem

If \(\phi_1 \) and \(\phi_2 \) are generating then \(h(\Sigma, \phi_1) = h(\Sigma, \phi_2) \). So let \(h(\Sigma, G, X, \mu) \) be this common number.

Two observables \(\phi : X \to A, \psi : X \to B \) are equivalent if the partitions \(\{\phi^{-1}(a) : a \in A\} \), \(\{\psi^{-1}(b) : b \in B\} \) agree up to measure zero.

Let \(\mathcal{P} \) be the set of all equivalence classes of observables \(\phi \) with \(H(\phi) < \infty \).

Definition (Rohlin distance)

\[
d(\phi, \psi) := 2H(\phi \vee \psi) - H(\psi) - H(\phi) = H(\phi \mid \psi) + H(\psi \mid \phi).
\]
Proof sketch

Definition

\(\phi \text{ refines } \psi \text{ if } H(\psi \lor \phi) = H(\phi). \)
Proof sketch

Definition

\(\phi \) refines \(\psi \) if \(H(\psi \lor \phi) = H(\phi) \).

Definition

\(\phi \) and \(\psi \) are combinatorially equivalent if there exists finite subsets \(K, L \subset G \) such that \(\phi^K \) refines \(\psi \) and \(\psi^L \) refines \(\phi \).
Proof sketch

Theorem

If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.
Proof sketch

Theorem

\[\text{If } \phi \text{ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.} \]

Lemma

\[h(\Sigma, \phi) \text{ is upper semi-continuous in } \phi. \]
Proof sketch

Theorem

If ϕ is a generator then its combinatorial equivalence class is dense in the space of all generating observables.

Lemma

$h(\Sigma, \phi)$ is upper semi-continuous in ϕ.

Theorem

If ϕ and ψ are combinatorially equivalent then $h(\Sigma, \phi) = h(\Sigma, \psi)$.
Proof sketch

Definition

φ is a **simple splitting** of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$\phi = \psi \lor \omega \circ f.$$

φ is a **splitting** of ψ if it can be obtained from ψ by a sequence of simple splittings.
Proof sketch

Definition

ϕ is a \textit{simple splitting} of ψ if there exists $f \in G$ and an observable ω refined by ψ such that

$$\phi = \psi \lor \omega \circ f.$$

ϕ is a \textit{splitting} of ψ if it can be obtained from ψ by a sequence of simple splittings.

Lemma

If ϕ and ψ are equivalent then there exists an observable ω that is a splitting of both ϕ and ψ.
Proof sketch

Definition

\(\phi \) is a **simple splitting** of \(\psi \) if there exists \(f \in G \) and an observable \(\omega \) refined by \(\psi \) such that

\[
\phi = \psi \lor \omega \circ f.
\]

\(\phi \) is a **splitting** of \(\psi \) if it can be obtained from \(\psi \) by a sequence of simple splittings.

Lemma

If \(\phi \) and \(\psi \) are equivalent then there exists an observable \(\omega \) that is a splitting of both \(\phi \) and \(\psi \).

Proposition

If \(\phi \) is a simple splitting of \(\psi \) then \(h(\Sigma, \phi) = h(\Sigma, \psi) \).
Applications: von Neumann algebras

A system \((G, X, \mu)\) gives rise in a natural way to a \textit{crossed product von Neumann algebra} \(L^\infty(X, \mu) \rtimes G\).
Applications: von Neumann algebras

A system \((G, X, \mu)\) gives rise in a natural way to a crossed product von Neumann algebra \(L^\infty(X, \mu) \rtimes G\).

If the action is ergodic and free and \(G\) is infinite then \(L^\infty(X, \mu) \rtimes G\) is a \(II_1\) factor.

Major problem: classify these algebras up to isomorphism in terms of the group/action data.
Applications: von Neumann algebras

A system \((G, X, \mu)\) gives rise in a natural way to a \textit{crossed product von Neumann algebra} \(L^\infty(X, \mu) \rtimes G\).

If the action is ergodic and free and \(G\) is infinite then \(L^\infty(X, \mu) \rtimes G\) is a \(\mathcal{II}_1\) factor.

Major problem: classify these algebras up to isomorphism in terms of the group/action data.

Theorem (Connes, 1976)

If \(G\) is infinite and amenable and the action \(G \curvearrowright (X, \mu)\) is free and ergodic then \(L^\infty(X, \mu) \rtimes G\) is hyperfinite. In particular, all such algebras are isomorphic.
Rigidity

Definition

\((G_1, X_1, \mu_1)\) and \((G_2, X_2, \mu_2)\) are von Neumann equivalent (vNE) if \(L^\infty(X_1, \mu_1) \rtimes G_1 \cong L^\infty(X_2, \mu_2) \rtimes G_2.\)
Rigidity

Definition

\((G_1, X_1, \mu_1)\) and \((G_2, X_2, \mu_2)\) are *von Neumann equivalent* (vNE) if

\[L^\infty(X_1, \mu_1) \rtimes G_1 \cong L^\infty(X_2, \mu_2) \rtimes G_2. \]

Theorem (Popa, 2006)

If \(G\) *is an ICC property T group then any two von Neumann equivalent Bernoulli shifts over* \(G\) *are isomorphic.*
Rigidity

Definition

\((G_1, X_1, \mu_1)\) and \((G_2, X_2, \mu_2)\) are *von Neumann equivalent* (vNE) if

\[L^\infty(X_1, \mu_1) \rtimes G_1 \cong L^\infty(X_2, \mu_2) \rtimes G_2. \]

Theorem (Popa, 2006)

If \(G\) is an ICC property \(T\) group then any two von Neumann equivalent Bernoulli shifts over \(G\) are isomorphic.

Corollary

If, in addition, \(G\) is sofic and Ornstein then Bernoulli shifts over \(G\) are classified up to vNE by base measure entropy. E.g., this occurs when \(G = PSL_n(\mathbb{Z})\) for \(n > 2\).
Applications: orbit equivalence

Definition

\((G_1, X_1, \mu_1)\) is orbit equivalent (OE) to \((G_2, X_2, \mu_2)\) if there exists a measure-space isomorphism \(\phi : X_1 \to X_2\) such that \(\phi(G_1 x) = G_2 \phi(x)\) for a.e. \(x \in X_1\).
Applications: orbit equivalence

Definition

(G_1, X_1, μ_1) is orbit equivalent (OE) to (G_2, X_2, μ_2) if there exists a measure-space isomorphism $\phi : X_1 \rightarrow X_2$ such that $\phi(G_1 x) = G_2 \phi(x)$ for a.e. $x \in X_1$.

Theorem (Dye 1959, Connes-Feldman-Weiss 1981)

If G_1 and G_2 are amenable and infinite and their respective actions are ergodic and free then (G_1, X_1, μ_1) is OE to (G_2, X_2, μ_2).
OE rigidity

Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume $3g + n - 4 > 0$ and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ).

Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy.
Theorem (Kida, 2008)

Let G be the mapping class group of a genus g surface with n holes. Assume $3g + n - 4 > 0$ and $(g, n) \notin \{(1, 2), (2, 0)\}$. If (G, X, μ) is free and ergodic then it is strongly orbitally rigid. I.e., if (G_2, X_2, μ_2) is free, ergodic and OE to (G, X, μ) then it is isomorphic to (G, X, μ).

Corollary

If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy.
Free Groups: a special case

Let $F = \langle s_1, \ldots, s_r \rangle$. Let F act on (X, μ).
Free Groups: a special case

Let $\mathbb{F} = \langle s_1, \ldots, s_r \rangle$. Let \mathbb{F} act on (X, μ).

Given an observable $\phi : X \to A$, define

$$F(\phi) := -(2r - 1)H(\phi) + \sum_{i=1}^{r} H(\phi \vee \phi \circ s_i);$$

$$f(\phi) := \inf_{n} F\left(\phi^{B(e,n)}\right).$$
Free Groups: a special case

Let $\mathbb{F} = \langle s_1, \ldots, s_r \rangle$. Let \mathbb{F} act on (X, μ).

Given an observable $\phi : X \to A$, define

$$F(\phi) := -(2r - 1)H(\phi) + \sum_{i=1}^{r} H(\phi \lor \phi \circ s_i);$$

$$f(\phi) := \inf_{n} F\left(\phi^{B(e,n)}\right).$$

Theorem

*If ϕ_1 and ϕ_2 are generating then $f(\phi_1) = f(\phi_2)$. So we may define $f(\mathbb{F}, X, \mu) = f(\phi_1)$. Moreover, $f(\mathbb{F}, K^\mathbb{F}, \kappa^\mathbb{F}) = H(K, \kappa)$.***
Free Groups: a special case

For each $n \geq 1$, let $\sigma_n : F = \langle s_1, \ldots, s_r \rangle \to \text{Sym}(n)$ be chosen uniformly at random.
Free Groups: a special case

For each $n \geq 1$, let $\sigma_n : F = \langle s_1, \ldots, s_r \rangle \to \text{Sym}(n)$ be chosen uniformly at random.

Define

$$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \lim_{n \to \infty} \sup_n \log \mathbb{E} \left[|\{ \psi : \{1, \ldots, n\} \to A : d_W(\phi, \psi) \leq \epsilon \}| \right].$$
Free Groups: a special case

For each $n \geq 1$, let $\sigma_n : F = \langle s_1, \ldots, s_r \rangle \to \text{Sym}(n)$ be chosen uniformly at random.

Define

$$h_*(\phi) := \inf_{W} \inf_{\epsilon > 0} \lim_{n \to \infty} \sup_n \log \mathbb{E} \left[\left| \{ \psi : \{1, \ldots, n\} \to A : d_W(\phi, \psi) \leq \epsilon \} \right| \right].$$

Theorem

$h_*(\phi) = f(\phi)$.
A Markov chain example
A Markov chain example

\begin{align*}
\text{1/2} & \quad \varepsilon \quad \text{1/2} \\
1 - \varepsilon & \quad \varepsilon \quad 1 - \varepsilon
\end{align*}

\begin{align*}
-2 & \quad -1 & \quad 0 & \quad 1 & \quad 2 & \quad 3
\end{align*}
The Cayley graph
The Ising model
Example

Let μ_ϵ be the probability measure on \{magenta, brown\}F determined by this process.
Example

Let μ_ϵ be the probability measure on $\{\text{magenta, brown}\}^F$ determined by this process.

Let $\phi : \{\text{magenta, brown}\}^F \to \{\text{magenta, brown}\}$ be evaluation at the identity.
Example

Let μ_ϵ be the probability measure on $\{\text{magenta, brown}\}^F$ determined by this process.

Let $\phi : \{\text{magenta, brown}\}^F \to \{\text{magenta, brown}\}$ be evaluation at the identity.

Then

$$F(\mu_\epsilon, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$
Example

Let μ_ϵ be the probability measure on $\{\text{magenta, brown}\}^F$ determined by this process.

Let $\phi : \{\text{magenta, brown}\}^F \rightarrow \{\text{magenta, brown}\}$ be evaluation at the identity.

Then

$$F(\mu_\epsilon, \phi) = -2\epsilon \log(\epsilon) - 2(1 - \epsilon) \log(1 - \epsilon) - \log(2).$$

Theorem

$$F(\mu_\epsilon, \phi) = h_*(F, \{\text{magenta, brown}\}^F, \mu_\epsilon).$$
Systems of algebraic origin
Let G be a compact separable group and let $T : G \to G$ be a group automorphism fixing a closed normal subgroup N.

Theorem (Yuzvinskii, 1965)
$h(T, G, \text{Haar}_G) = h(T, N, \text{Haar}_N) + h(T, G/N, \text{Haar}_{G/N}).$

Theorem
If G is totally disconnected and F acts by automorphisms on G with closed normal subgroup N then
$f(F, G, \text{Haar}_G) = f(F, N, \text{Haar}_N) + f(F, G/N, \text{Haar}_{G/N}).$

Let $G = (\mathbb{Z}/2\mathbb{Z})^F$. Let $N = \{0, 1\}$. By Ornstein-Weiss' example, $G/N \sim G \times G = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^F$.

\[f(F, G, \text{Haar}_G) = f(F, N, \text{Haar}_N) + f(F, G/N, \text{Haar}_{G/N}) \log(2) = -\log(2) + \log(4) \log(2) = 2 \log(2). \]
Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, \text{Haar}_{\mathcal{G}}) = h(T, \mathcal{N}, \text{Haar}_{\mathcal{N}}) + h(T, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}).$$
Systems of algebraic origin

Let G be a compact separable group and let $T : G \to G$ be a group automorphism fixing a closed normal subgroup N.

Theorem (Yuzvinskii, 1965)

$$h(T, G, \text{Haar}_G) = h(T, N, \text{Haar}_N) + h(T, G/N, \text{Haar}_{G/N}).$$

Theorem

If G is totally disconnected and F acts by automorphisms on G with closed normal subgroup N then

$$f(F, G, \text{Haar}_G) = f(F, N, \text{Haar}_N) + f(F, G/N, \text{Haar}_{G/N}).$$
Systems of algebraic origin

Let \mathcal{G} be a compact separable group and let $T : \mathcal{G} \to \mathcal{G}$ be a group automorphism fixing a closed normal subgroup \mathcal{N}.

Theorem (Yuzvinskii, 1965)

$$h(T, \mathcal{G}, \text{Haar}_\mathcal{G}) = h(T, \mathcal{N}, \text{Haar}_\mathcal{N}) + h(T, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}).$$

Theorem

If \mathcal{G} is totally disconnected and \mathbb{F} acts by automorphisms on \mathcal{G} with closed normal subgroup \mathcal{N} then

$$f(\mathbb{F}, \mathcal{G}, \text{Haar}_\mathcal{G}) = f(\mathbb{F}, \mathcal{N}, \text{Haar}_\mathcal{N}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}).$$

Let $\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^\mathbb{F}$. Let $\mathcal{N} = \{0, 1\}$. By Ornstein-Weiss’ example,

$$\mathcal{G}/\mathcal{N} \cong \mathcal{G} \times \mathcal{G} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^\mathbb{F}. $$
Systems of algebraic origin

Let G be a compact separable group and let $T : G \to G$ be a group automorphism fixing a closed normal subgroup N.

Theorem (Yuzvinskii, 1965)

$$h(T, G, \text{Haar}_G) = h(T, N, \text{Haar}_N) + h(T, G/N, \text{Haar}_{G/N}).$$

Theorem

If G is totally disconnected and F acts by automorphisms on G with closed normal subgroup N then

$$f(F, G, \text{Haar}_G) = f(F, N, \text{Haar}_N) + f(F, G/N, \text{Haar}_{G/N}).$$

Let $G = (\mathbb{Z}/2\mathbb{Z})^F$. Let $N = \{0, 1\}$. By Ornstein-Weiss’ example,

$$G/N \cong G \times G = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^F.$$

$$f(F, G, \text{Haar}_G) = f(F, N, \text{Haar}_N) + f(F, G/N, \text{Haar}_{G/N})$$
Systems of algebraic origin

Let \(\mathcal{G} \) be a compact separable group and let \(T : \mathcal{G} \to \mathcal{G} \) be a group automorphism fixing a closed normal subgroup \(\mathcal{N} \).

Theorem (Yuzvinskii, 1965)

\[
\begin{align*}
 h(T, \mathcal{G}, \text{Haar}_\mathcal{G}) &= h(T, \mathcal{N}, \text{Haar}_\mathcal{N}) + h(T, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}).
\end{align*}
\]

Theorem

If \(\mathcal{G} \) is totally disconnected and \(\mathbb{F} \) acts by automorphisms on \(\mathcal{G} \) with closed normal subgroup \(\mathcal{N} \) then

\[
\begin{align*}
 f(\mathbb{F}, \mathcal{G}, \text{Haar}_\mathcal{G}) &= f(\mathbb{F}, \mathcal{N}, \text{Haar}_\mathcal{N}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}).
\end{align*}
\]

Let \(\mathcal{G} = (\mathbb{Z}/2\mathbb{Z})^F \). Let \(\mathcal{N} = \{0, 1\} \). By Ornstein-Weiss’ example,

\[
\begin{align*}
 \mathcal{G}/\mathcal{N} &\cong \mathcal{G} \times \mathcal{G} = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^F.
\end{align*}
\]

\[
\begin{align*}
 f(\mathbb{F}, \mathcal{G}, \text{Haar}_\mathcal{G}) &= f(\mathbb{F}, \mathcal{N}, \text{Haar}_\mathcal{N}) + f(\mathbb{F}, \mathcal{G}/\mathcal{N}, \text{Haar}_{\mathcal{G}/\mathcal{N}}), \\
 \log(2) &= -\log(2) + \log(4).
\end{align*}
\]
Further Results & Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.
Further Results & Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

- Random regular graphs: bisection width, independence ratio, chromatic number, etc.
Further Results & Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

- Random regular graphs: bisection width, independence ratio, chromatic number, etc.

- Noncommutative entropy.
Further Results & Open Questions

- Ornstein theory for free groups: factors of Bernoulli shifts, factors onto Bernoulli shifts, mixing Markov chains, etc.

- Random regular graphs: bisection width, independence ratio, chromatic number, etc.

- Noncommutative entropy.

- Extend the f-invariant to more general groups.