1. How many 3 digit numbers can be formed from the numbers 0, 1, 2, 5, 7, 8, 9 if no digit can be repeated, the first digit must be nonzero, and each number formed must be even?

2. A $10,000 1-year term life insurance policy costs $150. If the probability that a particular person dies in the next year is 0.002, find the company’s expected net gain.

3. Let $U = \{d,e,f,g,1,2,3\}$, $A = \{d,g\}$, $B = \{e,f,g,2,3\}$, and $C = \{d,2\}$. Determine whether each of the following statements is true or false.

   (a) $1 \in C^c$

   (b) $\emptyset \subseteq B$

   (c) $\{g,2\} \subset (A \cap B)$

   (d) $(A^c \cup B) = \{e,f,3\}$

   (e) $\{2\} \in C$

4. A company manufactures fishing poles. Each fishing pole sells for $25, and the variable cost of producing each unit is 20% of the selling price. The monthly fixed costs incurred by the company are $20,000. What is the break-even point for the company?
5. Given the following linear programming problem:

Minimize \( C = 10x + 2y \)
Subject to \( x + y \geq 12 \)
\( 2x + y \geq 16 \)
\( x \geq 0, y \geq 0 \)

The optimal solution occurs at the intersection of which two lines?

6. An experiment consists of observing whether cars are kept in the driveway or in the garage. It was found that 75% of cars are kept in the driveway, and the remaining cars are kept in the garage. Of those cars kept in the driveway, 90% were worth less than $15,000. Of those kept in the garage, 80% were worth $15,000 or more. If a car worth less than $15,000 is randomly selected, what is the probability that it is in the driveway?

7. Solve the following system of linear equations using inverses:

\[
\begin{align*}
3x + 7y - 15z &= 9 \\
z &= 5x - 9y + 7 \\
2x - 5y &= z + 9
\end{align*}
\]

8. A girl scout convention is being held in College Station. Troop 647 is bringing 7 girls, Troop 916 is bringing 5 girls, and Troop 525 is bringing 3 girls. In how many ways can these girls sit in a row if each troop wants to sit together?
9. Let $Z$ be the standard normal variable. Find the following:

(a) $P(-0.75 < Z < 0.25)$

(b) $P(Z < 1)$

(c) $P(Z > 0.5)$

10. Pivot the given matrix about the element $a_{22}$:

\[
\begin{bmatrix}
1 & -2 & 5 & 9 \\
0 & 4 & -8 & 16 \\
0 & 5 & 3 & 9
\end{bmatrix}
\]

11. Solve the following matrix equation for $a$, $b$, and $c$:

\[
\begin{bmatrix}
7 & 5 & 6b \\
9 - c & 4 & 2
\end{bmatrix}
+ \begin{bmatrix}
9 & 2 \\
5 & 7
\end{bmatrix}
\begin{bmatrix}
a & 9 & 2 \\
10 & 5 & 9
\end{bmatrix}
= \begin{bmatrix}
81 & 96 & 108 \\
100 & 84 & 75
\end{bmatrix}
\]

12. A basket contains 5 oranges, 7 bananas, and 8 apples. If 5 pieces of fruit are randomly selected from the basket, how many samples contain exactly two oranges or exactly two apples?
13. What is the effective rate of interest of an account if the interest is compounded monthly and the investment will double in 20 years?

14. A group of 488 Aggies are going on a road trip to the bowl game. They are trying to decide how many cars, vans, and buses to take for the trip. They have determined that each car will seat 6 people and the expenses involved for each car come out to be $100. Each van holds 14 people and costs $195 per van. Each bus holds 40 people and costs $475. If they have decided that they want to take twice as many buses as vans, how many vehicles of each type should they take if the budget is $6,025 and they want to exactly use all of their budget and have no empty seats?

15. The value of a certain car is represented in the following table:

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$20,000</td>
<td>$18,000</td>
<td>$17,500</td>
<td>$15,000</td>
</tr>
</tbody>
</table>

Find the equation of the best-fit line (let \( x = 0 \) represent 2003 and let \( y \) represent the value of the car (in thousands)) and use it to approximate when the car value will reach $8,500. How well does the line fit the data?

16. Chris and Katie are going to a basketball game with eight of their friends. How many ways can they be seated in a row if Chris and Katie can’t sit next to each other?

17. A survey of 550 freshmen revealed that 300 own a car, 200 own a computer and 100 own neither a car nor a computer. If a student is randomly selected from this group what is the probability that they own a car but not a computer?

18. An experiment consists of randomly selecting one card out of a standard deck of 52 cards. Let \( E \) be the event that a red card is drawn and let \( F \) be the event that a club is drawn. Are the events \( E \) and \( F \) mutually exclusive events? Are the events \( E \) and \( F \) independent events?
19. Katie bought a house in 2000 for $300,000. She financed it with a 30 year mortgage at an annual interest rate of 7.25% compounded monthly on the unpaid balance.

(a) What are her current monthly payments?

(b) After making six years of payments she decides to refinance her home in 2006 with a 30 year mortgage that has an annual interest rate of 5.25% compounded monthly on the unpaid balance. What are her new monthly payments?

(c) How much total interest will she end up paying for this house?

20. The independent probabilities that Jenny, Karen, and Lindsay will attend class are 0.35, 0.95, and 0.76, respectively. What is the probability that exactly two of the girls will attend class?

21. Graph the system of linear inequalities:

\[
6x + 2y \leq 10 \\
16x - 8y \geq 24 \\
0 \leq x \leq 3
\]

22. A jar contains 10 pennies and 5 dimes. Three coins are randomly selected from the jar. Let \( X \) represent the value of the three coins (i.e. how much money you have). Find the probability distribution of \( X \).
23. How many days will it take for a sum of $2,000 to earn $50 interest if it is deposited in an account earning simple interest at the rate of 8% per year?

24. Classify each of the random variables as finite discrete, infinite discrete, or continuous:

(a) Let $X$ represent the weight of a newborn kitten in ounces.

(b) Cough drops are randomly selected with replacement from a bag containing 30 cherry, 20 menthol, and 35 lemon. Let $Y$ represent the number of cough drops drawn until a cherry cough drop is selected.

(c) Jane serves the volleyball 100 times. Let $Z$ represent the number of times she serves an ace.

25. Two marbles are randomly selected from a bin containing 8 red and 5 green marbles. If this experiment is repeated 10 times and the marbles are replaced each time, what is the probability of getting 2 red marbles at least 3 times?

26. Sarah is trying to arrange 5 identical blue candle sticks, 7 identical red candle sticks, and 3 identical green candle sticks on her shelf. How many distinguishable arrangements are possible?

27. Given the following matrices with the indicated dimensions, which of the following are valid matrix operations?

\[ A_{2 \times 4}, B_{3 \times 1}, C_{4 \times 3}, D_{3 \times 2} \]

(a) $AC - 6D^T$

(b) $5D^TB$

(c) $2CB$

(d) $A^T - CD$
28. It is determined that the weight and length of a particular animal have a linear relationship. If the animal is 3 inches in length, they will weigh 1 ounce. If the animal is 12 inches in length, they will weigh 5 ounces. Find the linear model and use it to predict the weight of an animal that is 21 inches in length.

29. Valerie decides to put $30 into an account every week. If the account earns 3.45%/year compounded weekly, how much will she have in the account 15 years from now?

30. Given the following probability distribution:

<table>
<thead>
<tr>
<th>$x$</th>
<th>-15</th>
<th>-5</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>0.056</td>
<td>0.72</td>
<td>0.19</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Find $E(X)$, $Var(X)$, $\sigma$, median, and mode.

31. Given $S = \{2, 4, 6, 8, 10, 12\}$, $A = \{2, 6, 12\}$, $B = \{8, 10, 12\}$, $C = \{2, 4, 6, 8, 10\}$, find the following:

(a) $A^c \cap B$

(b) $A \cup (B \cap C)^c$

(c) $B \cap (A \cap C)$

32. An account pays continuously compounded interest at the rate of 3.6% per year. If the account has $4,500 in it after eight years, how much money was originally placed in the account?

33. If $n(A \cup B) = 80$, $n(A) = 30$, and $n(B) = 75$, what is $n(A \cap B^c)$?
34. A company makes three different size tennis rackets. A small racket requires 1 unit of string, 2 units of rubber, and 3 units of titanium. A medium racket requires 2 units of string, 3 units of rubber, and 4 units of titanium. A large racket requires 3 units of string, 4 units of rubber, and 5 units of titanium. Each unit of string costs $1.50, each unit of rubber costs $2.25, and each unit of titanium costs $1.75. For a particular order, 200 small rackets, 150 medium rackets, and 80 large rackets are requested. Management has decided that Factory A will produce 150 of the small rackets, 50 of the medium rackets, and 60 of the large rackets. The remaining rackets of each size will be produced at Factory B. Put the above information into three matrices and then determine what matrix operation will tell you the cost of filling the order at each factory.

35. Let $X$ be a normal random variable with a mean of 0 and a standard deviation of 8. Find the value of $b$ if $P(-b < X < b) = 0.9826$.

36. A company makes two brands of cereal, brand A and brand B. A serving of brand A cereal has 3 ounces of flakes, 3 ounces of nuts, and sells for $4. A serving of brand B cereal has 6 ounces of flakes, 2 ounces of nuts, and sells for $2. How many servings of each type of cereal would maximize revenue if you have 24 ounces of flakes and 12 ounces of nuts available? Are there any leftover resources?

37. Graph the system of linear inequalities:

$$7x + 3y \geq 30$$
$$3x + 5y \geq 24$$
$$5x + 4y \leq 40$$
$$x \geq 0, y \geq 0$$

38. A True/False Exam consists of 15 questions. In how many ways can the exam be answered so that the student answers at least 10 questions correctly?
39. An experiment consists of rolling a fair six-sided die and flipping a fair coin.

(a) Find the Sample Space associated with this experiment.

(b) Find the event, $E$, that an even number is rolled.

(c) Find the $P(E)$.

40. Gabe has $2,500 in credit card debt on a card that charges 19.6% per year compounded monthly on the unpaid balance. If he pays the minimum payment of $50 each month, and he doesn’t use it to make any more purchases, how long will it take Gabe to pay off his debt?

41. An experiment consists of rolling a pair of fair six-sided dice. What is the probability that the sum is at least 9 or exactly one 5 is rolled?

42. An experiment consists of randomly selecting 1 marble from a bowl containing 5 red, 3 blue, and 10 white marbles. What is the probability that the marble selected is not white?

43. Solve the systems of linear equation using the Gauss-Jordan elimination method.

(a)

$-12x - 42y - 48z = -114$

$2x + 7y + 8z = 19$

$3x + 2y + 10z = 9$
44. If $E$ and $F$ are mutually exclusive events, $P(E) = 0.5$, and $P(F) = 0.3$, find $P((E \cap F^c) \cup (E^c \cap F))$.

45. A crate contains 90 strawberries of which 10 are rotten. If a customer randomly selects 15 strawberries, what is the probability that at least 3 of the strawberries are rotten?

46. A printer is purchased for $20,000 in 2000. The printer is linearly depreciated over a 10 year period, and it is known that the book value of the printer is $13,000 in 2006. What is the scrap value of the printer?

47. In a group of 10 people, what is the probability that at least 2 of them were born in the same month?
48. An experiment consists of first performing a task in which $A$, $B$, or $C$ can occur. Then, a second task is performed in which $D$ or $E$ can occur. The following probabilities are known: $P(A) = 0.3$, $P(C) = 0.5$, $P(D|A) = 0.25$, $P(E|B) = 0.7$, $P(D|C) = 0.64$. Find the following:

(a) $P(E)$

(b) $P(B|E)$

(c) $P(A \cup D)$

49. The scores on an English exam were normally distributed with a mean of 65 and a standard deviation of 5. If 10% of the class received an $A$ on the exam and 15% of the class received a $B$ on the exam, what was the cutoff for a $B$?

50. Solve the following linear programming problem:

Minimize $C = 2x + 4y$
Subject to $0.1x + 0.1y \geq 1$
$x + 2y \geq 14$
$x \geq 0, y \geq 0$

51. Brian has decided to purchase an engagement ring for his girlfriend. The ring costs $3,500. He decided to put 10% down and then finance the remaining balance for five years at 6.25%/year compounded annually. If he is required to make annual payments, create an amortization schedule for the loan.

52. A game consists of rolling a pair of fair six-sided dice. If the sum of the numbers is less than 5, the player wins $5. If the sum of the numbers is greater than 9, the player wins $4. Otherwise, the player loses $A$. Find the value of $A$ that makes this game fair.
53. It is known that 62% of Aggies purchased an all-sports pass. If 50 Aggies are randomly selected, what is the probability that at most 29 of them own a sports pass?

54. Shade the following regions on a Venn Diagram:

(a) $A \cap (B \cup C)$

(b) $B \cap C^c$

(c) $(A \cap B) \cup (B^c \cap C)$

55. It is known that the length of newborns is normal distributed with a mean of 21 inches and standard deviation of 3 inches. What is the probability that a randomly selected newborn has a length between 18 and 24 inches?

56. The quantity demanded each month of a certain brand of coffee machine is 275 when the unit price is $50. For each decrease in unit price of $5 below $50, the quantity demanded increases by 30 units. The suppliers will not market any coffee machines if the unit price is $30 or lower. But at a unit price of $60, they are willing to supply 400 units. Find the equilibrium quantity and the equilibrium price.
57. Danny put a $5,500 down payment on a car. He financed the remaining balance with a 60 month loan at a 5.5% annual interest rate compounded monthly on the unpaid balance. If the monthly car payments are $450, what is the cash price of the car?

58. Determine the value of \( b \) for which the system of linear equations

\[
4x - y = 6 \\
8x + by = 10
\]

has no solution.

59. A survey was done of 700 students on their preference of fruits. The following information was found:

- 275 students like bananas and strawberries.
- 250 students like all three fruits.
- 400 students like grapes.
- 50 students like only bananas and grapes.
- 20 students like only grapes.
- 205 students do not like bananas.
- 60 students like only strawberries.

How many students like exactly one of these kinds of fruit?

60. Find the point of intersection of the vertical line passing through the point \((-2, 5)\) and the line \(2x - 4y = 10\).