NO BOOKS, NO NOTES, please. Test #1 will be based on the material of your homeworks and theory covered in class. A “MUST” material includes:

1. Derivation of weak formulation of a given strong form of boundary value problems for ordinary differential equations of second and fourth order. This will include:
 - deriving the bilinear form $a(u, v)$;
 - deriving the linear form $L(v)$;
 - characterizing the corresponding space V;
 - deriving the strong form from a weak form.

2. Proofs of certain facts about various norms in V, inequalities, etc. for V being either H^1, H^2, or some subspaces of these two, e.g. H^1_0. This will include:
 - proving the coercivity of the bilinear form $a(u, v)$ in V;
 - proving the continuity of the linear form $L(v)$ in V;
 - Poincare inequality in V.

3. Proving error estimates in H^1 and L^2-norms for the FE interpolant u_I and Galerkin FE solution u_h. This will include:
 - Cea’s Lemma and duality argument (these two are absolute must);
 - Proving error estimates of the type $\| u' - u'_I \| \leq C h^k \| u^{(k+1)} \|$ for polynomials of degree k, where u_i is the Lagrange interpolating polynomial;
 - Proving error estimates of the type $\| u' - u'_h \| \leq C h^k \| u^{(k+1)} \|$, where u_h is the Ritz-Galerkin finite element solution when using polynomials of degree k;
 - Proving estimates in maximum norm: $\max_x |u(x) - u_h(x)| \leq C h^k \| u^{(k+1)} \|$, where u_h is the Ritz-Galerkin finite element solution when using polynomials of degree k;

4. FEM in multidimensional case: weak formulation of various boundary value problems for second order elliptic problems.

4. For a given boundary value problem you could be asked to compute the element stiffness or/and mass matrix, or to compute the global matrix of the Ritz-Galerkin method for a given number of finite elements.