Matthias S. Maier

Curriculum Vitae

Department of Mathematics Texas A&M University, 3368 TAMU College Station, TX 77843, USA Maier@tamu.edu ttps://people.tamu.edu/~maier

	Academic positions
09/2022 -	Associate Professor (with tenure) Department of Mathematics, Texas A&M University
08/2018 - 08/2022	Assistant Professor Department of Mathematics, Texas A&M University
07/2015 - 08/2018	Dunham Jackson Assistant Professor School of Mathematics, University of Minnesota
10/2011 - 06/2015	Research Associate (Wissenschaftlicher Mitarbeiter), Numerical Analysis Group, Institute of Applied Mathematics Ruprecht-Karls-Universität Heidelberg
	Education
06/2015	Dr. rer. nat. with grade summa cum laude Ruprecht-Karls-Universität Heidelberg Thesis: <i>Duality-based adaptivity of model and discretization in multiscale finite-element</i> <i>methods</i> , supervised by Prof. Dr. Dr. h. c. Rolf Rannacher
02/2012 - 06/2015	Member (with research fellowship) of the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Ruprecht-Karls-Universität Heidelberg
10/2006 - 09/2011	Diplom (equivalent to M. Sc.) in Mathematics, Ruprecht-Karls-Universität Heidelberg Final grade: "sehr gut" (excellent) Minor subjects: Computer Science, Physics
10/2005 - 02/2011	Diplom (equivalent to M. Sc.) in Physics, Ruprecht-Karls-Universität Heidelberg Final grade: "sehr gut" (excellent) Diplom thesis: <i>Simulation of Boundary Layer Flow over Riblet Structures</i> Minor subjects: Computer Science, Mathematics
	Research interests
_	Computational fluid dynamics: hyperbolic conservation laws, compressible Euler and Navier-Stokes equations, coupled Euler-Poisson and Euler-Maxwell systems
_	<i>Multiscale effects in Maxwell's equations:</i> surface plasmon-polaritons on 2D materials, plasmonic crystals
_	<i>Multiscale methods:</i> heterogeneous multiscale methods, variational multiscale methods; asymptotic analysis and homogenization theory, model adaptation
_	Finite element methods and finite element software

1/13

Grants and allocations

11/2022 - 10/2025	AFOSR FA9550-23-1-0007 "Robust approximation of hyperbolic-dominated models" (co-PI
	with JL. Guermond and B. Popov), \$609,386.

- 09/2021 08/2026 NSF DMS 2045636 "CAREER: Robust and high-performance computational methods for simulating metamaterial-based optical devices", \$470 000.
- 06/2021 05/2022 TACC Frontera allocation, NSF DMS 21004 "'ryujin towards robust and efficient computation of supersonic hyperbolic flow at large and small scales", 160 000 SUs (8.96M core hours).
- 09/2019 08/2022 NSF DMS 1912847 "Efficient and Adaptive Methods for Simulating Multiscale Effects in Optical Metamaterials", \$ 125 000.
- 01/2019 12/2020 T3 Texas A&M Triads for Transformation, Co-PI with Q. Michaudel and M. Green, \$ 30 000.

Honors and awards

2021 NSF CAREER Award

- 2017 Highlight of the Year award, On the Wiener-Hopf Method for Surface Plasmons: Diffraction from Semi-infinite Metamaterial Sheet, Studies in Applied Mathematics, 2017
- 02/2012 06/2015 Research fellowship, Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Ruprecht-Karls-Universität Heidelberg

Software development

- Since 09/2018 Developer, ryujin, a high-performance high-order finite-element solver for conservation equations such as the compressible Navier-Stokes and Euler equations of gas dynamics. (https://github.com/conservation-laws/ryujin)
- Since 10/2014 Developer, Gentoo Linux Distribution (https://www.gentoo.org)
- Since 11/2013 Principal developer, deal.II, a C++ program library targeted at the computational solution of partial differential equations using adaptive finite elements. (https://www.dealii.org)

Submitted journal articles (* with student)

- 1. J.-L. Guermond, M. Maier, and E. J. Tovar. A high-order explicit runge-kutta approximation technique for the shallow water equations. *Submitted*, 2024. URL https://arxiv.org/abs/2403.XXXXX
- M. Maier, D. Corraliza-Rodriguez, and D. Margetis. Dyakonov-Shur instability of electronic fluid: Spectral effect of weak magnetic field. *Submitted*, 2024. URL https://arxiv.org/abs/2403.06386
- 3. M. Kronbichler, M. Maier, and I. Tomas. Graph-based methods for hyperbolic systems of conservation laws using discontinuous space discretizations, part i: building blocks. *Submitted*, 2024. URL https://arxiv.org/abs/2402.04514

- 4. J.-L. Guermond, M. Maier, B. Popov, L. Saavedra, and I. Tomas. Greedy invariant-domain preserving approximation for hyperbolic systems. *Submitted*, 2023. URL https://arxiv.org/abs/2310.01713
- 5. M. Bezbaruah, M. Maier, and W. Wollner. Shape optimization of optical microscale inclusions. *Submitted*, 2023. URL https://arxiv.org/abs/2306.13248

Journal articles (* with student)

*

The list of authors on mathematical publications is predominantly in alphabetical order.

- D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, B. Turcksin, D. Wells, and S. Zampini. The deal.II Library, Version 9.5. *Journal of Numerical Mathematics*, 31(3):231–246, 2023. doi: 10.1515/jnma-2023-0089
- B. Clayton, J.-L. Guermond, M. Maier, B. Popov, and E. J. Tovar. Robust second-order approximation of the compressible euler equations with an arbitrary equation of state. *Journal of Computational Physics*, page 111926, 2023. doi: 10.1016/j.jcp.2023.111926. URL https://arxiv.org/abs/2207.12832
- M. Maier, J. Shadid, and I. Tomas. Structure-preserving finite-element schemes for the Euler-Poisson equations. *Communications in Computational Physics*, 33:647–691, 2023. doi: 10.4208/cicp.OA-2022-0205. URL https://arxiv.org/abs/2207.07860
- D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko, B. Turcksin, and D. Wells. The deal.II Library, Version 9.4. *Journal of Numerical Mathematics*, 30(3):231–246, 2022. doi: 10.1515/jnma-2022-0054
- J.-L. Guermond, M. Kronbichler, M. Maier, B. Popov, and I. Tomas. On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. *Computer Methods in Applied Mechanics and Engineering*, 389:114250, 2022. doi: 10.1016/j.cma.2021.114250. URL https://arxiv.org/abs/2106.02159
- W. Li, R. Lipton, and M. Maier. Lorentz resonance in the homogenization of plasmonic crystals. *Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences*, 477:20210609, 2021. doi: 10.1098/rspa.2021.0609. URL https://arxiv.org/abs/2009. 12166
- D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D. Wells, and J. Zhang. The deal.II Library, Version 9.3. *Journal of Numerical Mathematics*, 29(3): 171–186, 2021. doi: 10.1515/jnma-2021-0081
- 13. M. Maier and M. Kronbichler. Efficient parallel 3d computation of the compressible euler equations with an invariant-domain preserving second-order finite-element scheme. *ACM Transactions on Parallel Computing*, 8(3):16:1–30, 2021. doi: 10.1145/3470637. URL https://arxiv.org/abs/2007.00094

- J.-L. Guermond, M. Maier, B. Popov, and I. Tomas. Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations. *Computer Methods in Applied Mechanics and Engineering*, 375(1):113608, 2021. doi: 10.1016/j.cma.2020.113608. URL https://arxiv.org/abs/2009.06022
- 15. D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II finite element library: design, features, and insights. *Computers & Mathematics with Applications*, 81(1):407–422, 2021. doi: 10.1016/j. camwa.2020.02.022. URL https://arxiv.org/abs/1910.13247
- J. H. Song, M. Maier, and M. Luskin. Nonlinear eigenvalue problems for coupled Helmholtz equations modeling gradient-index graphene waveguides. *Journal of Computational Physics*, 423(15):109871, 2020. doi: 10.1016/j.jcp.2020.109871. URL https://arxiv.org/abs/ 2003.06531

*

*

- 17. M. Maier, D. Margetis, and M. Luskin. Finite-size effects in wave transmission through plasmonic crystals: A tale of two scales. *Physical Review B*, 102:075308, 2020. doi: 10.1103/ PhysRevB.102.075308. URL https://arxiv.org/abs/2005.12778
- D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister, L. Heltai, M. Kronbichler, P. Munch, M. Maier, J.-P. Pelteret, R. Rastak, B. Turcksin, Z. Wang, and D. Wells. The deal.II Library, Version 9.2. *Journal of Numerical Mathematics*, 28(3):131–146, 2020. doi: https://doi.org/10.1515/jnma-2020-0043
- M. Maier, D. Margetis, and A. Mellet. Homogenization of Maxwell's equations in nonhomogeneous plasmonic structures. *Journal of Computational and Applied Mathematics*, 377, 2020. doi: 10.1016/j.cam.2020.112909. URL https://arxiv.org/abs/1805.07671
- D. Margetis, M. Maier, T. Stauber, T. Low, and M. Luskin. Nonretarded edge plasmonpolaritons in anisotropic two-dimensional materials. *Journal of Physics A: Mathematical and Theoretical*, 53(5), 2020. doi: 10.1088/1751-8121/ab5ff9. URL https://arxiv.org/ abs/1910.04840
- D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II Library, Version 9.1. *Journal of Numerical Mathematics*, 27(4):203–213, 2019. doi: 10.1515/jnma-2019-0064
- 22. M. Maier, M. Mattheakis, E. Kaxiras, M. Luskin, and D. Margetis. Homogenization of plasmonic crystals: Seeking the epsilon-near-zero effect. *Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences*, 475, 2019. doi: 10.1098/rspa.2019.0220. URL https://arxiv.org/abs/1809.08276
- J. H. Song, M. Maier, and M. Luskin. Adaptive finite element simulations of waveguide configurations involving parallel 2d material sheets. *Computer Methods in Applied Mechanics and Engineering*, 351:20–34, 2019. doi: 10.1016/j.cma.2019.03.039. URL https://arxiv. org/abs/1809.06516
 - G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmöller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II Library, Version 9.0. *Journal of Numerical Mathematics*, 26(4): 173–184, 2018. doi: 10.1515/jnma-2018-0054

- M. Maier, M. Mattheakis, E. Kaxiras, M. Luskin, and D. Margetis. Universal behavior of dispersive Dirac cone in gradient-index plasmonic metamaterials. *Physical Review B*, 97(3), 2018. doi: 10.1103/PhysRevB.97.035307. URL https://arxiv.org/abs/1711.02210
- 26. M. Maier and R. Rannacher. A duality-based optimization approach for model adaptivity in heterogeneous mutliscale problems. *SIAM Multiscale Modeling and Simulation*, 16(1): 412-428, 2018. doi: 10.1137/16M1105670. URL https://arxiv.org/abs/1611.09437
- M. Maier, A. Nemilentsau, T. Low, and M. Luskin. Ultracompact amplitude modulator by coupling hyperbolic polaritons over a graphene-covered gap. ACS Photonics, 5(2):544–551, 2018. doi: 10.1021/acsphotonics.7b01094. URL https://arxiv.org/abs/1709.06626
- M. Maier, D. Margetis, and M. Luskin. Generation of surface plasmon-polaritons by edge effects. *Communications in Mathematical Sciences*, 16(1):77–95, 2018. doi: 10.4310/CMS. 2018.v16.n1.a4. URL https://arxiv.org/abs/1702.00848
- 29. D. Margetis, M. Maier, and M. Luskin. On the Wiener-Hopf method for surface plasmons: Diffraction from semi-infinite metamaterial sheet. *Studies in Applied Mathematics*, 139(4): 599-625, 2017. doi: 10.1111/sapm.12180. URL https://arxiv.org/abs/1701.02784
- D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, B. Turcksin, and D. Wells. The deal.II Library, Version 8.5. *Journal of Numerical Mathematics*, 25 (3):137–145, 2017. doi: 10.1515/jnma-2017-0058
- M. Maier, D. Margetis, and M. Luskin. Dipole excitation of surface plasmon on a conducting sheet: finite element approximation and validation. *Journal of Computational Physics*, 339: 126-145, 2017. doi: 10.1016/j.jcp.2017.03.014. URL https://arxiv.org/abs/1605. 08456
- M. Maier and R. Rannacher. Duality-based adaptivity in finite element discretization of heterogeneous multiscale problems. *Journal of Numerical Mathematics*, 24(3):167– 187, 2016. doi: 10.1515/jnma-2014-0074. URL https://www-users.math.umn.edu/ ~msmaier/preprint-maierrannacher-jnma14.pdf
- 33. M. Maier, M. Bardelloni, and L. Heltai. LinearOperator—a generic, high-level expression syntax for linear algebra. Computers & Mathematics with Applications, 72(1):1-24, 2016. doi: 10.1016/j.camwa.2016.04.024. URL https://www-users.math.umn.edu/~msmaier/ preprint-maierbardelloniheltai-camwa15.pdf
- W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and D. Wells. The deal.II Library, Version 8.4. *Journal of Numerical Mathematics*, 24(3):135–141, 2016. doi: 10.1515/jnma-2016-1045
- 35. W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin. The deal.II Library, Version 8.3. *Archive of Numerical Software*, 4, 2016. doi: 10.11588/ans. 2016.100.23122
- W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin. The deal.II Library, Version 8.2. Archive of Numerical Software, 3, 2015. doi: 10.11588/ans. 2015.100.18031

Publications in conference proceedings (* with student)

37. M. Mattheakis, M. Maier, W. X. Boo, and E. Kaxiras. Graphene epsilon-near-zero plasmonic crystals. In *Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication*, NANOCOM '19, pages 2:1–2:6, 2019. doi: 10.1145/3345312.3345496. URL https://arxiv.org/abs/1906.00018

Preprints, reports and software publications

- 38. M. Bezbaruah, M. Maier, and W. Wollner. Inversehomogenization: shape optimization for optical metamaterials with low-dimensional interfaces, 2024. URL https://github.com/tamiko/InverseHomogenization/
- 39. I. Tomas, J. Shadid, M. Maier, and A. Salgado. Final report of activities for the LDRD-CIS project 226834 titled: Asymptotic preserving methods for fluid electron-fluid models in the large magnetic field limit with mathematically guaranteed properties. Technical report, Sandia National Laboratories, Albuquerque, NM, 2022
- 40. M. Bezbaruah and M. Maier. deal.II step-81: A time-harmonic Maxwell solver for lowerdimensional inclusions, 2022. URL https://github.com/tamiko/step-81
- 41. I. Tomas, J. Shadid, M. Crockatt, R. Pawlowski, M. Maier, and J.-L. Guermond. Final report of activities for the LDRD-express project 223796 titled: Fluid models of charged species transport: numerical methods with mathematically guaranteed properties. Technical report, Sandia National Laboratories, Albuquerque, NM, 2021
- 42. M. Maier and M. Kronbichler. Ryujin: High-performance second-order collocation-type finite-element scheme for solving the compressible euler equations of gas dynamics on unstructured meshes, 2020. URL https://github.com/conservation-laws/ryujin
- 43. M. Maier and I. Tomas. deal.II step-69: A first-order hydrodynamics code for the compressible Euler equations, 2020. URL https://github.com/tamiko/step-69
- 44. M. Maier. rspa-2019: Computational resources for "homogenization of plasmonic crystals: Seeking the epsilon-near-zero effect", 2020. URL https://github.com/tamiko/ rspa-2019
- 45. M. Licht and M. Maier. Robust global and goal-oriented a posteriori error estimation for reaction-diffusion equations. 2017. URL https://arxiv.org/abs/1707.09659
- 46. M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0, 2016
- 47. W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young. The deal.II Library, Version 8.1. 2013. URL https://arxiv.org/abs/1312.2266v4
- 48. W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young. The deal.II Library, Version 8.0. 2013. URL https://arxiv.org/abs/1312.2266v3

Theses

*

49. M. Maier. *Duality-based adaptivity of model and discretization in multiscale finite-element methods*. Doctoral thesis, Heidelberg University, 2015

50. M. Maier. Simulation von Grenzschichtströmungen über Ribletstrukturen (simulation of boundary layer flow over riblet structures). Diplom thesis, Heidelberg University, 2011

Service

	I have reviewed articles for a number of journals (last 4 years): ACM Trans. Math. Softw. (four times); ACM Trans. Parallel Comput. (two times); Comput. Math. Appl. (two times); Comput. Methods Appl. Mech. Eng. (four times); J. Math. Anal. Appl. (one time); J. Open Source Softw. (one time); J. Opt. Soc. Am (two times); Numer. Math. (one time); SIAM J. Appl. Math. (two times); Stud. Appl. Math. (two times)
11/2023	Organizer (with I. Tomas and J. Chan) of Minisymposium Accurate, robust, and structure- preserving methods for computational fluid dynamics, SIAM Texas-Louisiana Sectional Con- ference in Applied Mathematics, Lafayette, LA, USA
3/2023	Workshop organizer of the <i>Finite Element Rodeo</i> 2023, Texas A&M University, College Station, TX, USA
2/2023	Organizer (with I. Tomas and J. Chan) of Minisymposium Structure Preserving and Robust Techniques for the Simulation of Transport Phenomena and Fluid Flow, SIAM Conference on Computational Science and Engineering (CSE23) Amsterdam, Netherlands
11/2022	Organizer (with D. Massatt) of Minisymposium Advances in theory and computation of functional optical materials, SIAM Texas-Louisiana Sectional Conference in Applied Mathematics, Houston, TX, USA
Since 9/2022	Member of the <i>Undergraduate Studies Committee</i> , Department of Mathematics, Texas A&M University, College Station, TX, USA
2022	Grant review panelist (two times), National Science Foundation
7/2021	Organizer (with J. Lin) of Minisymposium Mathematical Theories and Computational Algorithms for Novel Optical Materials, SIAM AN 2021, USA (online)
3/2021	Organizer (with P. Cazeaux) of Minisymposium Frontiers in Material Modeling and Device Simulation: From Nano- to Meso-Scale, SIAM CSE 2021, USA (online)
2021	Grant review panelist, National Science Foundation
10/2020	Organizer (with JL. Guermond and B. Popov) of Minisymposium <i>Structure preserving tech-</i> <i>niques for nonlinear conservation equations</i> , 3 rd SIAM Texas-Louisiana Sectional Conference in Applied Mathematics, College Station, TX, USA (online)
10/2020	Organizer (with R. Lipton) of Minisymposium Analytic and computational approaches for metamaterial and nanoscale optics, 3 rd SIAM Texas-Louisiana Sectional Conference in Applied Mathematics, College Station, TX, USA (online)
10/2020	Organizing Committee, 3 rd SIAM Texas-Louisiana Sectional Conference in Applied Mathematics, College Station, TX, USA
11/2013 - 06/2015	$Deputy\ member\ of\ the\ Diplom\ Examination\ Board,\ Ruprecht-Karls-Universit\"at\ Heidelberg$
08/2013	Organizing Committee, 4th deal.II Workshop, College Station, TX, USA
08/2012	Organizing Committee, 3rd deal.II Workshop, Heidelberg, Germany

	Short courses, research stays and visits
03/2024	Visitor, Workshop on Mathematical Models of Electronic Charge Transport and Phases in Low-Dimensional Material, Brin Mathematics Research Center, University of Maryland, College Park, MD, USA March 11 – March 15, 2024
01/2020	Visitor, Workshop on Theory and Computation for 2D Materials, IPAM, UCLA, Los Angeles, CA, USA, Jan 12 – Jan 21, 2020
05/2019 - 06/2019	Visitor, IMA Workshop on Hydrodynamic Models for Transport in 2D Materials, University of Minnesota, Minneapolis, MN, USA, May 06 - June 07, 2019
06/2017	Invited lecturer, Advanced topics in *nix software development - toolchain, build systems and software testing, Short course in the Master in High Performance Computing program, SISSA, Trieste, Italy
03/2014	Assistance and exercises, DAAD Summer School on Numerical Methods with the Finite Element Method, Universidad Nacional de Trujillo, Peru
	Outreach
03/2023	Mathematical Modeling, Fluids, and Airplanes that Shouldn't Fly, AMUSE Seminar, Texas A&M University, College Station, TX, USA
02/2023	Mathematical Modeling, Fluids, and Airplanes that Shouldn't Fly, Aggieland Saturday, Texas A&M University, College Station, TX, USA
02/2019	Fractals, K12 Math Club, Texas A&M University, College Station, TX, USA
10/2019	Potential flow and why does an airplane fly?, AMUSE Seminar, Texas A&M University, College Station, TX, USA
02/2019	<i>Finite element methods and adaptive strategies for multiscale problems</i> , Industrial and Applied Seminar, Texas A&M University, College Station, TX, USA
10/2016	<i>Finite element methods and adaptive strategies for multiscale problems</i> , AMS Student Chapter Seminar, University of Minnesota, Minneapolis, MN, USA
4/2016	Potential flow and why does an airplane fly?, Undergratue Math Club, University of Min- nesota, Minneapolis, MN, USA
	Talks and presentations (last 4 years, * invited talk)
11/2023	Homogenization of Layered Heterostructures, ISC Workshop on Data-Driven Model Reduc- tion, Scientific Frontiers, and Applications, Texas A&M University, College Station, TX, USA
11/2023	Lorentz Resonance in the Homogenization of Plasmonic Crystals, SIAM TX-LA Sectional Meeting 2023, Lafayette, LA, USA
09/2023	Lorentz Resonance in the Homogenization of Plasmonic Crystals, MPHA Seminar, Texas A&M University, College Station, TX, USA
09/2023	Parallelization of a stencil-based method for the compressible Navier-Stokes equations, 10th deal.II Workshop, Hannover, Germany

7/2023	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, USNCCM17, Albuquerque, NM, USA *
7/2023	Structure-preserving finite-element schemes for the Euler-Poisson equations, Eulerian Appli- cation Project Colloquium, Los Alamos National Laboratory, Los Alamos, NM, USA *
4/2023	Structure-preserving finite-element schemes for the Euler-Poisson equations, Computational Mathematics Seminar, Louisiana State University, Baton Rouge, LA, USA *
4/2023	Robust and approximation of the compressible Navier-Stokes equations, Finite Element Rodeo 2023, Texas A&M University, TX, USA *
3/2023	Robust and efficient approximation of the compressible Navier-Stokes equations, SIAM CSE 2023, Amsterdam, Netherlands *
11/2022	Robust and efficient approximation of the compressible Navier-Stokes equations, SIAM TX-LA Sectional Meeting 2022, Houston, TX, USA *
10/2022	Structure-preserving finite-element schemes for the Euler-Poisson equations, CAM Seminar, University of Tennessee, Knoxville, TN, USA *
10/2022	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, CNLS Seminar, Los Alamos National Laboratory, Los Alamos, NM, USA *
09/2022	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, GCEC Seminar, University of Glasgow, UK (online) *
09/2022	Structure-preserving finite-element schemes for the Euler-Poisson equations, AMS Sectional Meeting, El Paso, TX, USA *
08/2022	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, Applied and Computational Math Seminar, University of Minnesota, Minneapolis, MN, USA *
07/2022	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, Oberseminar Mathematische Strömungsmechanik, University of Würzburg, Würzburg, Germany *
07/2022	Robust and efficient approximation of the compressible Euler and Navier-Stokes equations, IWR Scientific Computing Seminar, Heidelberg University, Heidelberg, Germany *
03/2022	Efficient parallel 3d computation of the compressible Navier-Stokes equations, Computational Math Seminar, Clemson University, SC, USA *
02/2022	<i>Optical Phenomena, Resonances, and Homogenization of Layered Heterostructures,</i> Oberseminar Numerische Mathematik, Bochum University, Bochum, Germany *
12/2021	Efficient parallel 3d computation of the compressible Navier-Stokes equations, Math Collo- quium, University of Houston, TX, USA *
11/2021	Optical Phenomena, Resonances, and Homogenization of Layered Heterostructures, SIAM TX-LA Sectional Meeting 2021, South Padre Island, TX, USA *
05/2021	Efficient parallel 3d computation of the compressible Navier-Stokes equations, Oberseminar Mathematische Strömungsmechanik, University of Würzburg, Würzburg, Germany (on- line) *

04/2021	<i>Efficient parallel 3d computation of the compressible Navier-Stokes equations</i> , Seminar Special Topics in Numerics, Otto von Guricke University Magdeburg, Magdeburg, Germany (online) *
03/2021	Optical Phenomena and Resonances in Layered Heterostructures, SIAM CSE, Dallas, TX, USA (online)
02/2021	Resonances in Homogenization of Layered Heterostructures, DMS Applied Mathematics Seminar, Auburn University (online) *
10/2020	Massively Parallel 3D Computation of the Compressible Euler Equations, CLASS Seminar, Texas A&M University (online)
10/2020	Finite-Element Computation Of The Conductivity Feedback Of Nanoscale Optical Devices, SIAM TX-LA Sectional Meeting 2020 (online)
10/2020	Massively Parallel 3D Computation of the Compressible Euler Equations With An Invariant- Domain Preserving Second-Order Finite-Element Scheme, SIAM TX-LA Sectional Meeting 2020 (online)
09/2020	Optical Phenomena and Resonances in the Homogenization of Layered Heterostructures, Meta- materials 2020 (online) *
09/2020	<i>Finite-element computation of the conductivity feedback of nanoscale optical devices</i> , AMS Central Sectional Meeting (online) *
05/2020	Parallelization of "stencil-based" methods, deal. II Developer Hackathon, keynote (online)
05/2020	Some comments on the 9.2.0 release, deal.II Developer Hackathon (online)
01/2020	2D plasmonic computation of layered heterostructures, IPAM Workshop on Theory and Computation for 2D Materials, UCLA, Los Angeles, CA, USA $*$

Graduate advising

Currently serving on eight graduate committees at TAMU.

Since 12/2023	Crystal Farris, Texas A&M University; Ph. D. program (advisor)
Since 1/2023	David Pecoraro, Texas A&M University; Ph. D. program (advisor)
3/2022 - 12/2022	Brett Caldwell, Texas A&M University; Master program (advisor)
Since 11/2021	Jordan Hoffart, Texas A&M University; Ph. D. program (advisor)
Since 09/2019	Manaswinee Bezbaruah, Texas A&M University; Ph. D. program (advisor)
09/2020 - 08/2021	Drew Macha, Texas A&M University; Distance Master program (advisor)
07/2015 - 06/2020	Jung Heon Song, University of Minnesota: <i>Surface plasmon polaritons in waveguide configurations</i> , Ph. D. program (co-advisor); now working for KLA Corporation
05/2013 - 05/2014	Niloufar Rahi, Ruprecht-Karls-Universität Heidelberg: A Priori L^{∞} -Error Estimation for FE-Galerkin Approximations of linear and non-linear elliptic Partial Differential Equations on Locally Refined Meshes, Diplom thesis (co-advisor)

Undergraduate advising and mentoring

- 01/2020 04/2020 Jack Dahlberg and Jordan Hoffart, Texas A&M University: *Numerical study of decay rates of the 1D Klein-Gordon equations*, co-advised with Jonas Lührmann, MATH 491 Undergraduate research project
- 01/2020 04/2020 Zhiyu Song, Texas A&M University: Computation of propagating modes in 2D waveguide configurations, MATH 491 Capstone project
- 06/2018 08/2018 Wei Xi Boo, University of Minnesota: Computation of Dispersion Curves for Optical Phenomena in Layered Structures, Undergraduate Research Opportunities Program stipend
- 01/2018 05/2018 Noah Wong, University of Minnesota: *Modeling and Simulation of Potential Flow*, Independent Study, B. S. program
- 01/2017 05/2017 Victor Wright, University of Minnesota: *Linear programming in operations research*, Independent Study, B. S. program
- 09/2016 12/2016 Evan Henke, University of Minnesota: *Monte-carlo simulation of optimal game strategies*, Independent Study, B. S. program

Curriculum development

- Collaborative undergraduate research project (CRP)
 - The CRP program is funded by Career Award DMS-2045636 and organized within a larger Directed Reading Program (DRP) at the Department organized by Dr. A. Shiu. It pairs a team of undergraduate mentees and graduate mentors to work together on a research topic with the goal of teaching core competences in computational sciences and highlighting *collaborative* research.
- Math 676
 - Pioneering project-based, flipped classroom, graduate level course highlighting practical aspects of the finite element method and scientific software development: The course is designed for students involved in research in numerical methods, or students who want to use the finite element method for simulations in their graduate research.

Teaching (Texas A&M University)

Fall 2023

Collaborative research program (DRP/CRP, 4 students, 2 teams)

• Undergraduate research for teams consisting of two undergraduate mentees (and a graduate mentor) with an emphasis on teaching core competences in computational sciences and highlighting collaborative research.

Numerical Partial Differential Equations (Math 610, 5 students)

• Graduate level course covering introductory and advanced topics in numerical analysis of finite difference and finite element approximations of partial differential equations.

Numerical Partial Differential Equations (Distance course, Math 610, 5 students)

Numerical Methods (Math 417, 22 students)

• Upper-division undergraduate-level course covering introductory topics centered around numerical methods and their application.

Spring 2023	 Finite Element Methods in Scientific Computing (Math 676, 15 students) Pioneering project-based graduate level course highlighting practical aspects of the finite element method and scientific software development.
Fall 2022	Collaborative research program (DRP/CRP, 6 students, 3 teams)
	Numerical Partial Differential Equations (Math 610, 8 students)
	Numerical Partial Differential Equations (Distance course, Math 610, 4 students)
Spring 2022	_
Fall 2021	Numerical Partial Differential Equations (Math 610, 14 students)
	 Principles of Numerical Analysis (Math 437, 18 students) O Upper-division undergraduate-level course covering introductory topics centered around mathematical principles of numerical analysis and their application to the study of particular methods.
Spring 2021	Finite Element Methods in Scientific Computing (Math 676, 8 students)
Fall 2020	Numerical Partial Differential Equations (Math 610, 6 students)
Spring 2020	 Iterative Methods (Distance course, Math 639, 5 students) Graduate level course covering development and analysis of iterative methods applied to the solution of large sparse systems of linear equations.
Fall 2019	Numerical Partial Differential Equations (Math 610, 6 students)
Spring 2019	Finite Element Methods in Scientific Computing (Math 676, 12 students)
Fall 2018	 Mathematical Modeling (Math 442, 25 students) Upper-division undergraduate-level course covering introductory topics in mathematical models based on optimization, dynamical systems and probability theory.
	Teaching (University of Minnesota)
Spring 2018 & Fall 2017	 Introduction to Numerical Methods (Math 5485 & 5486, 37 students) Upper-division undergraduate-level course sequence covering introductory topics in numerical methods about numerical integration, nonlinear equations, systems of linear equations, ordinary and partial differential equations.
Spring 2017 & Fall 2016	 Numerical Analysis and Scientific Computing (Math 8441 & 8442, 10 students) Graduate level course sequence covering introductory and advanced topics in numerical analysis and scientific computing about approximation theory, optimization problems, ordinary and partial differential equations.
Spring 2016	 Mathematical Modeling (Math 4428, 30 students) O Upper-division undergraduate-level course covering introductory topics in mathematical models based on optimization, dynamical systems and probability theory.

Fall 2015

Differential Equations and Linear Algebra (Math 2243, 178 students)

• Introductory undergraduate-level course about linear algebra and ordinary differential equations.