Michael Anshelevich

Office: Blocker 533D

Email address: manshel math.tamu.edu
Department of Mathematics
Texas A&M University
College Station TX 77843-3368

Combinatorics: Math 630

Undergraduate research

Linear Analysis seminar

Free probability seminar


Professional links

Teaching

Some (very) old links

PUBLICATIONS:

With one (free electronic) exception, older versions of these papers are available at the
Mathematics arXiv.
  1. Operator-Valued Monotone Convolution Semigroups and an Extension of the Bercovici-Pata Bijection (with John D. Williams), arXiv:1412.1413 [math.OA].
  2. Operator-valued Jacobi parameters and examples of operator-valued distributions (with John D. Williams), arXiv:1412.1280 [math.OA].
  3. Local limit theorems for multiplicative free convolutions (with JC Wang and Ping Zhong), J. Funct. Anal. 267 (2014), 3469-3499.
  4. Limit theorems for monotonic convolution and the Chernoff product formula (with John D. Williams), Int. Math. Res. Notices 2014 (11), 2990-3021. A version with more general results is at arXiv:1209.4260 [math.OA].
  5. Free evolution on algebras with two states II, arXiv:1204.0289 [math.OA].
  6. A characterization of ultraspherical polynomials, arXiv:1108.0914 [math.CA].
  7. Convolution powers in the operator-valued framework (with Serban T. Belinschi, Maxime Fevrier, and Alexandru Nica), Trans. Amer. Math. Soc. 365 (2013), 2063-2097.
  8. Generators of some non-commutative stochastic processes, Probab. Theory Related Fields 157 (2013), 777-815.
  9. Quantum free Yang-Mills on the plane (with Ambar N. Sengupta), J. Geom. Phys. 62 (2012) 330-343.
  10. Semigroups of distributions with linear Jacobi parameters (with Wojciech Młotkowski), J. Theoret. Probab. 25 (2012), 1173-1206.
  11. Two-state free Brownian motions, J. Funct. Anal. 260 (2011), 541-565.
  12. Bochner-Pearson-type characterization of the free Meixner class, Adv. in Appl. Math. 46 (2011), 25-45 (special issue in honor of Dennis Stanton).
  13. Free infinite divisibility for q-Gaussians (with Serban Teodor Belinschi, Marek Bożejko, and Franz Lehner), Math. Res. Lett. 17 (2010), 905-916.
  14. Product-type non-commutative polynomial states, Noncommutative Harmonic Analysis with Applications to Probability II, Banach Center Publ., vol. 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pp. 45-59.
  15. Free evolution on algebras with two states, J. Reine Angew. Math. 638 (2010), 75-101.
  16. Appell polynomials and their relatives III. Conditionally free theory, Illinois J. Math. 53 (2009), 39-66.
  17. Appell polynomials and their relatives II. Boolean theory, Indiana Univ. Math. J. 58 (2009), 929-968.
  18. Monic non-commutative orthogonal polynomials, Proc. Amer. Math. Soc. 136 (2008), 2395-2405.
  19. Orthogonal polynomials with a resolvent-type generating function, Trans. Amer. Math. Soc. 360 (2008), 4125-4143.
  20. Free Meixner states, Commun. Math. Phys. 276 (2007), 863-899.
  21. Zimmermann type cancellation in the free Faà di Bruno algebra (with Edward G. Effros and Mihai Popa), J. Funct. Anal. 237 (2006), 76-104.
  22. Linearization coefficients for orthogonal polynomials using stochastic processes, Ann. Probab. 33 (2005), 114-136.
  23. q-Lévy processes, J. Reine Angew. Math. 576 (2004), 181-207.
  24. Appell polynomials and their relatives, Int. Math. Res. Not. 2004 n. 65, 3469-3531. Maple worksheet used in the Appendix. A more complete version of the paper is at arXiv:math/0311043 [math.CO].
  25. Free martingale polynomials, J. Funct. Anal. 201 (2003), 228-261.
  26. Itô formula for free stochastic integrals, J. Funct. Anal. 188 (2002), 292-315.
  27. Free stochastic measures via noncrossing partitions II, Pacific J. Math. 207 (2002), 13-30.
  28. Partition-dependent stochastic measures and q-deformed cumulants, Doc. Math. 6 (2001), 343-384.
  29. Free stochastic measures via noncrossing partitions, Adv. Math. 155 (2000), 154-179.
  30. The linearization of the central limit operator in free probability theory, Probab. Theory Related Fields 115 (1999), 401-416.

CONFERENCES:

College Station restaurants and hotels.