Math 128a, Homework 6
due October 23.

1. Problem 4.1 (a-c).

2. (a) Problem 4.3(a).
(b) Suppose that we have done Gaussian elimination on a matrix A, so that solving $Ax = b$ for a new b costs just $\text{const} \cdot n^2$ operation, since we can reuse A’s L and R factors. Let u, v be vectors, and denote by v^T the transpose of v, and by \cdot the dot product. Show that the following algorithm solves $(A + u \cdot v^T)x = b$, and takes $\text{const} \cdot n^2$ operations. This is much cheaper than Gaussian elimination on $A + u \cdot v^T$, which would cost $2/3n^3$. This is useful because it is common to have to solve several different systems of linear equations where the matrices differ by just adding $u \cdot v^T$ for some column vectors u, v. Hint: use part (a).

1) Solve $Az = b$ for z.
2) Solve $Ay = u$ for y.
3) Compute $\alpha = v^T y$ (a dot product).
4) Compute $\beta = v^T z$ (a dot product).
5) Compute $x = z - \frac{\beta}{1+\alpha} y$ (adding a multiple of one vector to another).

4. Write a function to decompose a matrix in its LU decomposition. Define random matrices with dimensions 10×10, 100×100 and 1000×1000, and compare the speed of your function with that of the built-in function `lu.m`. For the 10×10 matrices, compare the matrices themselves. Describe your observations.