Math 311 handout on Fourier series

Michael Anshelevich

March 14, 2008
\[f(x) = x. \text{ Fourier series } S_N(x) = -2 \sum_{k=1}^{N} \frac{(-1)^k}{k} \sin(kx). \]

Using 4, 8, 16 terms on \([-\pi, \pi]\). Approximates well, except at the endpoints: values 0 instead of \(\pm \pi\).
$f(x) = |x|$. Fourier series $U_N(x) = \frac{1}{2\pi} - \frac{4}{\pi} \sum_{k=0}^{N} \frac{1}{(2k+1)^2} \cos((2k+1)x)$.

With 0, 1 terms. Why are so few terms enough?
\[f(x) = \begin{cases} -1, & -\pi \leq x < 0, \\ 1, & 0 \leq x \leq \pi \end{cases}. \]

Fourier series

\[T_N(x) = \frac{4}{\pi} \sum_{k=0}^{N} \frac{1}{2k+1} \sin((2k+1)x). \]
Approximation on the whole real line, with 50 terms. Note the end-point jumps (on the first but not the second graph) and periodicity. Also note the Gibbs phenomenon.
Gibbs phenomenon does not disappear for better approximations: for 50 vs. 100 terms

Pointwise but not uniform convergence.