Math 447, Homework 6.

1. Suppose \(g : D \to [-\infty, \infty] \) is measurable. Using \(1/0 = \infty \), define \(1/g : D \to (-\infty, \infty] \) in a natural way. Prove that it is measurable.

2. Exercise 17.25 (page 303).

3. Exercise 17.33 (page 305). You may use without proof that a function continuous a.e. is measurable (cf. Theorem 17.4) and the results in Exercise 32.

4. Exercise 17.36 (page 306).

Quiz 6. Let \(D \) be a measurable set with \(m(D) < \infty \). Suppose the family of measurable functions \(\{f_n : D \to \mathbb{R}\} \) is pointwise bounded: for each \(x \in D \), there exists an \(M_x < \infty \) such that \(|f_n(x)| \leq M_x \) for all \(n \). Show that, given \(\varepsilon > 0 \), there exists a closed set \(F \subset D \) with \(m(D \setminus F) < \varepsilon \) such that this family is uniformly bounded on \(F \): for some finite \(M \), \(|f_n(x)| \leq M \) for all \(n \) and all \(x \in F \).
1. Suppose $g : D \to [-\infty, \infty]$ is measurable. Using $1/0 = \infty$, define $1/g : D \to (-\infty, \infty]$ in a natural way. Prove that it is measurable.

2. Exercise 17.31 (page 305).

3. Exercise 17.33 (page 305). You may use without proof that a function continuous a.e. is measurable (cf. Theorem 17.4) and the results in Exercise 32.

4. Exercise 17.36 (page 306).

Honors Quiz 6. Let D be a measurable set with $m(D) < \infty$. Suppose the family of measurable functions $\{f_n : D \to \mathbb{R}\}$ is pointwise bounded: for each $x \in D$, there exists an $M_x < \infty$ such that $|f_n(x)| \leq M_x$ for all n. Show that, given $\varepsilon > 0$, there exists a closed set $F \subset D$ with $m(D \setminus F) < \varepsilon$ such that this family is uniformly bounded on F: for some finite M, $|f_n(x)| \leq M$ for all n and all $x \in F$.