Measures, orthogonal polynomials, and continued fractions

Michael Anshelevich

November 7, 2008
MEASURES AND ORTHOGONAL POLYNOMIALS.
MEASURES AND ORTHOGONAL POLYNOMIALS.

μ a positive measure on \mathbb{R}.
MEASURES AND ORTHOGONAL POLYNOMIALS.

\(\mu \) a positive measure on \(\mathbb{R} \).

A linear functional \(\mu[P] = \int P(x) \, d\mu(x) \),

\[\mu : \mathbb{R}[x] \rightarrow \mathbb{R}. \]
MEASURES AND ORTHOGONAL POLYNOMIALS.

μ a positive measure on \mathbb{R}.

A linear functional $\mu[P] = \int P(x) \, d\mu(x)$,

$$\mu : \mathbb{R}[x] \to \mathbb{R}.$$

Positive:

$$\mu[P(x)^2] \geq 0.$$
MEASURES AND ORTHOGONAL POLYNOMIALS.

µ a positive measure on \(\mathbb{R} \).

A linear functional

\[
\mu[P] = \int P(x) \, d\mu(x),
\]

\(\mu : \mathbb{R}[x] \to \mathbb{R} \).

Positive:

\[
\mu[P(x)^2] \geq 0.
\]

Inner product \(\langle P, Q \rangle = \mu[PQ] \).
MEASURES AND ORTHOGONAL POLYNOMIALS.

\(\mu \) a positive measure on \(\mathbb{R} \).

A linear functional \(\mu[P] = \int P(x) \, d\mu(x) \),

\[
\mu : \mathbb{R}[x] \to \mathbb{R}.
\]

Positive:

\[
\mu[P(x)^2] \geq 0.
\]

Inner product \(\langle P, Q \rangle = \mu[PQ] \).

Gram-Schmidt \(\{1, x, x^2, x^3, \ldots\} \Rightarrow \)
Measures and Orthogonal Polynomials.

\(\mu \) a positive measure on \(\mathbb{R} \).

A linear functional \(\mu[P] = \int P(x) \, d\mu(x) \),

\(\mu : \mathbb{R}[x] \to \mathbb{R} \).

Positive:

\[\mu[P(x)^2] \geq 0. \]

Inner product \(\langle P, Q \rangle = \mu[PQ] \).

Gram-Schmidt \(\{1, x, x^2, x^3, \ldots \} \Rightarrow \)

\(\Rightarrow \) monic orthogonal polynomials

\[\{P_0 = 1, P_1, P_2, P_3, \ldots \}. \]
Theorem. (Favard, Stone, etc.) For some $\beta_i \in \mathbb{R}$, $\gamma_i \geq 0$

$$xP_n = P_{n+1} + \beta_n P_n + \gamma_n P_{n-1}.$$
Theorem. (Favard, Stone, etc.) For some $\beta_i \in \mathbb{R}$, $\gamma_i \geq 0$

$$xP_n = P_{n+1} + \beta_n P_n + \gamma_n P_{n-1}.$$

2nd order recursion relation.
Theorem. (Favard, Stone, etc.) For some $\beta_i \in \mathbb{R}$, $\gamma_i \geq 0$

$$xP_n = P_{n+1} + \beta_n P_n + \gamma_n P_{n-1}.$$

2nd order recursion relation.

Two independent solutions $\{P_n, Q_n\}$.

Initial conditions

$$P_{-1} = 0, \quad P_0 = 1, \quad P_1 = x - \beta_0,$$
$$Q_0 = 0, \quad Q_1 = 1, \quad Q_2 = x - \beta_1.$$
Theorem. (Favard, Stone, etc.) For some $\beta_i \in \mathbb{R}, \gamma_i \geq 0$

\[xP_n = P_{n+1} + \beta_n P_n + \gamma_n P_{n-1}. \]

2nd order recursion relation.

Two independent solutions \(\{P_n, Q_n\} \).

Initial conditions

\[P_{-1} = 0, \quad P_0 = 1, \quad P_1 = x - \beta_0, \]
\[Q_0 = 0, \quad Q_1 = 1, \quad Q_2 = x - \beta_1. \]

Exercise.

\[Q_n(x) = (I \otimes \mu) \left[\frac{P_n(x) - P_n(y)}{x - y} \right]. \]
\[\mu \leftrightarrow \left\{ (\beta_0, \beta_1, \beta_2, \ldots) \right\} \equiv \left\{ (\gamma_1, \gamma_2, \gamma_3, \ldots) \right\} \text{ equivalent.} \]
\[\mu \leftrightarrow \left\{ \left(\beta_0, \beta_1, \beta_2, \ldots \right), \left(\gamma_1, \gamma_2, \gamma_3, \ldots \right) \right\} \] equivalent.

More explicit relation?

If know \[\left\{ \left(\beta_0, \beta_1, \beta_2, \ldots \right), \left(\gamma_1, \gamma_2, \gamma_3, \ldots \right) \right\} \], how to recover \(\mu \)?

Without going through \(\{P_n\} \).
\[
\mu \leftrightarrow \left\{ (\beta_0, \beta_1, \beta_2, \ldots), (\gamma_1, \gamma_2, \gamma_3, \ldots) \right\} \text{ equivalent.}
\]

More explicit relation?

If know \(\left\{ (\beta_0, \beta_1, \beta_2, \ldots), (\gamma_1, \gamma_2, \gamma_3, \ldots) \right\} \), how to recover \(\mu \)?

Without going through \(\{P_n\} \).

Cauchy transform

\[
G_\mu(z) = \int \frac{1}{z-x} d\mu(x) = \mu \left[\frac{1}{z-x} \right]
\]

\[
= \frac{\mu[1]}{z} + \frac{\mu[x]}{z^2} + \frac{\mu[x^2]}{z^3} + \frac{\mu[x^3]}{z^4} + \ldots
\]
\[G_\mu(z) = \frac{\mu[1]}{z} + \frac{\mu[x]}{z^2} + \frac{\mu[x^2]}{z^3} + \frac{\mu[x^3]}{z^4} + \ldots \]

Theorem. Also

\[G_\mu(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \ldots}}}} \]

Same coefficients as in the recursion.
\[G_{\mu}(z) = \frac{\mu[1]}{z} + \frac{\mu[x]}{z^2} + \frac{\mu[x^2]}{z^3} + \frac{\mu[x^3]}{z^4} + \ldots. \]

Theorem. Also

\[
G_{\mu}(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \ldots}}}}
\]

Same coefficients as in the recursion.

Note: \(\mu \geq 0 \iff \text{all } \gamma \geq 0 \), no determinants.
\[G_\mu(z) = \frac{\mu[1]}{z} + \frac{\mu[x]}{z^2} + \frac{\mu[x^2]}{z^3} + \frac{\mu[x^3]}{z^4} + \ldots. \]

Theorem. Also

\[G_\mu(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \ldots}}}} \]

Same coefficients as in the recursion.

Note: \(\mu \geq 0 \Leftrightarrow \) all \(\gamma \geq 0 \), no determinants.

Proof II. Flajolet (1980): lattice paths.
Proof I. Look at

\[G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{\gamma_2}} \frac{1}{z - \beta_1 - \frac{\gamma_2}{\gamma_3}} \frac{1}{z - \beta_2 - \frac{\gamma_3}{\gamma_nH}} ... \]
Proof 1. Look at

$$G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{\gamma_1}} \frac{\gamma_2}{\gamma_2} \frac{\gamma_3}{\gamma_3} \ldots \frac{z - \beta_{n-1} - \gamma_n H}{z - \beta_n - \gamma_n H}$$

$$G = \frac{\text{polynomial}}{\text{polynomial}}.$$
Proof I. Look at

\[
G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\ldots}}}} - \beta_{n-1} - \gamma_n H
\]

\[
G = \frac{\text{polynomial}}{\text{polynomial}}.
\]

Claim.

\[
G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H},
\]

where \(\{P, Q\}\) with recursion \(\{\beta_i, \gamma_i\}\).
Proof. By induction.
Proof. By induction.

\[
G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}.
\]
Proof. By induction.

\[G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}. \]

Assume

\[G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H} \]
Proof. By induction.

\[
G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}.
\]

Assume

\[
G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H}
\]

and say

\[
H = \frac{1}{z - \beta_n - \gamma_{n+1} K}.
\]
Proof. By induction.

\[G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}. \]

Assume

\[G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H} \]

and say

\[H = \frac{1}{z - \beta_n - \gamma_{n+1} K}. \]

Then

\[G = \frac{Q_n - \gamma_n Q_{n-1} \frac{1}{z - \beta_n - \gamma_{n+1} K}}{P_n - \gamma_n P_{n-1} \frac{1}{z - \beta_n - \gamma_{n+1} K}}. \]
Proof. By induction.

\[G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}. \]

Assume

\[G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H} \]

and say

\[H = \frac{1}{z - \beta_n - \gamma_{n+1} K}. \]

Then

\[G = \frac{Q_n - \gamma_n Q_{n-1}}{P_n - \gamma_n P_{n-1}} \frac{1}{z - \beta_n - \gamma_{n+1} K} \]

\[= \frac{zQ_n - \beta_n Q_n - \gamma_{n+1} Q_n K - \gamma_n Q_{n-1}}{zP_n - \beta_n P_n - \gamma_{n+1} P_n K - \gamma_n P_{n-1}}. \]
Proof. By induction.

\[
G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}.
\]

Assume

\[
G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H}
\]

and say

\[
H = \frac{1}{z - \beta_n - \gamma_{n+1} K}.
\]

Then

\[
G = \frac{Q_n - \gamma_n Q_{n-1} \frac{1}{z-\beta_n-\gamma_{n+1} K}}{P_n - \gamma_n P_{n-1} \frac{1}{z-\beta_n-\gamma_{n+1} K}}
\]

\[
= \frac{zQ_n - \beta_n Q_n - \gamma_{n+1} Q_n K - \gamma_n Q_{n-1}}{zP_n - \beta_n P_n - \gamma_{n+1} P_n K - \gamma_n P_{n-1}}
\]
Proof. By induction.

\[G = \frac{1}{z - \beta_0 - \gamma_1 H_0} = \frac{Q_1 - \gamma_1 Q_0 H_0}{P_1 - \gamma_1 P_0 H_0}. \]

Assume

\[G = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H} \]

and say

\[H = \frac{1}{z - \beta_n - \gamma_{n+1} K}. \]

Then

\[
G = \frac{Q_n - \gamma_n Q_{n-1} \frac{1}{z - \beta_n - \gamma_{n+1} K}}{P_n - \gamma_n P_{n-1} \frac{1}{z - \beta_n - \gamma_{n+1} K}} = \frac{zQ_n - \beta_n Q_n - \gamma_{n+1} Q_n K - \gamma_n Q_{n-1}}{zP_n - \beta_n P_n - \gamma_{n+1} P_n K - \gamma_n P_{n-1}} = \frac{Q_{n+1} - \gamma_{n+1} Q_n K}{P_{n+1} - \gamma_{n+1} P_n K}.
\]
FINITE CONTINUED FRACTIONS.
Finite continued fractions.

Let $G_n = G$ cut off at level n.

$$G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\ldots}}}}$$

$H = 0.$
Let $G_n = G$ cut off at level n.

$$
G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\ldots}}}}
$$

$$
H = 0.
$$

$$
G_n = \frac{Q_n - \gamma_n Q_{n-1} H}{P_n - \gamma_n P_{n-1} H} = \frac{Q_n}{P_n}.
$$
\[G_n = \frac{Q_n}{P_n}. \]

\(P_n \) monic, \(n \) real roots
\[G_n = \frac{Q_n}{P_n}. \]

\[P_n \text{ monic, } n \text{ real roots} \]

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]
\[G_n = \frac{Q_n}{P_n}. \]

\(P_n \) monic, \(n \) real roots

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]

\[G_n(z) = \int \frac{1}{z - x} d\mu_n(x) \]
\[G_n = \frac{Q_n}{P_n}. \]

\(P_n \) monic, \(n \) real roots

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]

\[G_n(z) = \int \frac{1}{z - x} d\mu_n(x) = \frac{Q_n(z)}{\prod(z - x_i)} \]
\[G_n = \frac{Q_n}{P_n}. \]

\[P_n \text{ monic, } n \text{ real roots} \]

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]

\[G_n(z) = \int \frac{1}{z - x} d\mu_n(x) = \frac{Q_n(z)}{\prod(z - x_i)} \]

\[= \text{(partial fractions)} = \sum \frac{a_i}{z - x_i}. \]
\[G_n = \frac{Q_n}{P_n}. \]

\(P_n \) monic, \(n \) real roots

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]

\[G_n(z) = \int \frac{1}{z - x} \, d\mu_n(x) = \frac{Q_n(z)}{\prod(z - x_i)} \]

= (partial fractions) = \[\sum \frac{a_i}{z - x_i}. \]

\[G_n = \text{Cauchy transform of} \]

\[\mu_n = \sum a_i \delta_{x_i}, \]
\[G_n = \frac{Q_n}{P_n}. \]

\[P_n \text{ monic, } n \text{ real roots} \]

\[P_n(x) = \prod_{i=1}^{n} (x - x_i). \]

\[G_n(z) = \int \frac{1}{z - x} d\mu_n(x) = \frac{Q_n(z)}{\prod(z - x_i)} \]

\[= \text{(partial fractions)} = \sum \frac{a_i}{z - x_i}. \]

\[G_n = \text{Cauchy transform of} \]

\[\mu_n = \sum a_i \delta_{x_i}, \]

\[x_i = \text{roots of } P_n, \quad a_i = \frac{Q_n(x_i)}{P_n'(x_i)}. \]
\[G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1} - \frac{\gamma_2}{z - \beta_2} - \frac{\gamma_3}{\cdots} - \frac{\beta_{n-1}}{z - \beta_{n-1}} - 0} \]

\(G_n \) approximate \(G \).
\[G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\cdots}}}} \]

\[G_n \text{ approximate } G. \]

\[G_n = G_{\mu_n}, \quad \mu_n = \sum_{i=1}^{n} a_i \delta_{x_i}. \]
\[G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1} - \frac{\gamma_2}{z - \beta_2} - \frac{\gamma_3}{z - \beta_3} - \ldots - \frac{\gamma_{n-1}}{z - \beta_{n-1}} - 0} \]

\(G_n \) approximate \(G \).

\[G_n = G_{\mu_n}, \quad \mu_n = \sum_{i=1}^{n} a_i \delta_{x_i}. \]

Do \(\mu_n \) approximate \(\mu \)?
$$G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{\gamma_2} \frac{\gamma_2}{\gamma_3} \cdots \frac{\gamma_{n-1}}{\gamma_n} - 0}$$

G_n approximate G.

$$G_n = G_{\mu_n}, \quad \mu_n = \sum_{i=1}^{n} a_i \delta x_i.$$

Do μ_n approximate μ?

Yes.
\[G_n(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\cdots}}} - \beta_{n-1} - 0} \]

\(G_n \) approximate \(G \).

\[G_n = G_{\mu_n}, \quad \mu_n = \sum_{i=1}^{n} a_i \delta_{x_i}. \]

Do \(\mu_n \) approximate \(\mu \)?

Yes. In fact,

\[\mu_n[P(x)] = \mu[P(x)] \text{ for } \deg P \leq 2n - 1. \]
GAUSSIAN QUADRATURE.
Gaussian quadrature.

Want to evaluate

\[\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i). \]
GAUSSIAN QUADRATURE.

Want to evaluate

\[\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i). \]

“Riemann sums”.

46
GAUSSIAN QUADRATURE.

Want to evaluate

$$\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i).$$

"Riemann sums".

Want $\int P(x) \, d\mu(x) = \sum_{i=1}^{n} a_i P(x_i)$ for P of low degree.
Gaussian quadrature.

Want to evaluate

$$\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i).$$

“Riemann sums”.

Want $$\int P(x) \, d\mu(x) = \sum_{i=1}^{n} a_i P(x_i)$$ for $$P$$ of low degree.

How to choose $$a_i, x_i$$?
Gaussain Quadrature.

Want to evaluate

$$\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i).$$

“Riemann sums”.

Want \(\int P(x) \, d\mu(x) = \sum_{i=1}^{n} a_i P(x_i) \) for \(P \) of low degree.

How to choose \(a_i, x_i \)?

Answer: take \(x_i = \) roots of \(P_n \).
Gaussian Quadrature.

Want to evaluate

\[\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i). \]

“Riemann sums”.

Want \(\int P(x) \, d\mu(x) = \sum_{i=1}^{n} a_i P(x_i) \) for \(P \) of low degree.

How to choose \(a_i, x_i \)?

Answer: take \(x_i = \) roots of \(P_n \).

Choose \(a_i \) so that

\[\int x^k \, d\mu(x) = \sum a_i x_i^k, \quad k = 0, 1, \ldots, n - 1 \]

(\(n \) equations, \(n \) unknowns).
GAUSSIAN QUADRATURE.

Want to evaluate

\[
\int f(x) \, d\mu(x) \approx \sum_{i=1}^{n} a_i f(x_i).
\]

“Riemann sums”.

Want \(\int P(x) \, d\mu(x) = \sum_{i=1}^{n} a_i P(x_i) \) for \(P \) of low degree.

How to choose \(a_i, x_i \)?

Answer: take \(x_i = \) roots of \(P_n \).

Choose \(a_i \) so that

\[
\int x^k \, d\mu(x) = \sum a_i x^k_i, \quad k = 0, 1, \ldots, n - 1
\]

(\(n \) equations, \(n \) unknowns).

Our \(a_i = \frac{Q_n(x_i)}{P'_n(x_i)} \) work.
Proof. Lagrange interpolation: for any P with $\deg P < n$,

\[
P(x) = \sum_{i=1}^{n} \frac{P(x_i)P_n(x)}{P'_n(x_i)(x - x_i)}.
\]

Note

\[
\mu \left[\frac{P_n(x)}{x - x_i} \right] = \mu \left[\frac{P_n(x) - P_n(x_i)}{x - x_i} \right] = Q_n(x_i)
\]

so

\[
\mu[P(x)] = \sum_{i=1}^{n} \frac{P(x_i)}{P'_n(x_i)} Q_n(x_i) = \left(\sum_{i=1}^{n} \frac{Q_n(x_i)}{P'_n(x_i)} \delta_{x_i} \right) [P]
\]
Proof. Lagrange interpolation: for any \(P \) with \(\deg P < n \),

\[
P(x) = \sum_{i=1}^{n} \frac{P(x_i)P_n(x)}{P_n'(x_i)(x - x_i)}.
\]

Note

\[
\mu \left[\frac{P_n(x)}{x - x_i} \right] = \mu \left[\frac{P_n(x) - P_n(x_i)}{x - x_i} \right] = Q_n(x_i)
\]

so

\[
\mu[P(x)] = \sum_{i=1}^{n} \frac{P(x_i)}{P_n'(x_i)} Q_n(x_i) = \left(\sum_{i=1}^{n} \frac{Q_n(x_i)}{P_n'(x_i)} \delta_{x_i} \right) [P]
\]

\[
\mu[P(x)] = \left(\sum_{i=1}^{n} a_i \delta_{x_i} \right) [P(x)]
\]

\[
\mu[P(x)] = \mu_n[P(x)] \text{ for } \deg P < n.
\]
Proof. Lagrange interpolation: for any P with $\text{deg } P < n$,

$$P(x) = \sum_{i=1}^{n} \frac{P(x_i)P_n(x)}{P'_n(x_i)(x - x_i)}.$$

Note

$$\mu \left[\frac{P_n(x)}{x - x_i} \right] = \mu \left[\frac{P_n(x) - P_n(x_i)}{x - x_i} \right] = Q_n(x_i)$$

so

$$\mu[P(x)] = \sum_{i=1}^{n} \frac{P(x_i)}{P'_n(x_i)} Q_n(x_i) = \left(\sum_{i=1}^{n} \frac{Q_n(x_i)}{P'_n(x_i)} \delta_{x_i} \right) [P]$$

In fact, same x_i, a_i work for $k = n, n + 1, \ldots, 2n - 1$.

\[\mu[P(x)] = \mu_n[P(x)] \text{ for } \text{deg } P < n. \]
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \text{deg } A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \deg A < n$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \text{deg } A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \text{deg } A < n$$

$$\Rightarrow \mu[B] = 0$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \deg A < n$$

$$\Rightarrow \mu[B] = 0 \Rightarrow \mu_n[B] = 0.$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \deg A < n$$

$$\Rightarrow \mu[B] = 0 \quad \Rightarrow \quad \mu_n[B] = 0.$$

Finally,

$$\mu_n[AP_n]$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \text{deg } A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \text{deg } A < n$$

$$\Rightarrow \mu[B] = 0 \quad \Rightarrow \quad \mu_n[B] = 0.$$

Finally,

$$\mu_n[AP_n] = \sum a_i A(x_i)P_n(x_i)$$
For $P_k, n \leq k \leq 2n - 1,$

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0.$

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \deg A < n$$

$$\Rightarrow \mu[B] = 0 \quad \Rightarrow \quad \mu_n[B] = 0.$$

Finally,

$$\mu_n[AP_n] = \sum a_i A(x_i)P_n(x_i) = 0,$$
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \deg A < n$$

$$\Rightarrow \mu[B] = 0 \quad \Rightarrow \quad \mu_n[B] = 0.$$

Finally,

$$\mu_n[AP_n] = \sum a_i A(x_i)P_n(x_i) = 0,$$

so $\mu_n[P_k] = 0$.
For P_k, $n \leq k \leq 2n - 1$,

$$P_k(x) = A(x)P_n(x) + B(x), \quad \deg A, B \leq n - 1.$$

$$\mu[P_k] = \langle 1, P_k \rangle = 0.$$

To show: $\mu_n[P_k] = 0$.

$$\mu[AP_n] = \langle A, P_n \rangle = 0 \quad \text{deg } A < n$$

$$\Rightarrow \mu[B] = 0 \Rightarrow \mu_n[B] = 0.$$

Finally,

$$\mu_n[AP_n] = \sum a_i A(x_i)P_n(x_i) = 0,$$

so $\mu_n[P_k] = 0$.

So $\mu_n \to \mu$, $G_n \to G$, and therefore $G_\mu = G$.
If know \(\{\beta_i, \gamma_i\} \), can find \(\mu \)?
If know \(\{\beta_i, \gamma_i\} \), can find \(\mu \)?

Usually hard:

\[
G_\mu(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \ldots}}}}
\]

an infinite expression.
If know \(\{\beta_i, \gamma_i\} \), can find \(\mu \)?

Usually hard:

\[
G_\mu(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\ldots}}}}
\]

an infinite expression.

Class of explicit examples.
If know \(\{\beta_i, \gamma_i\} \), can find \(\mu \)?

Usually hard:

\[
G_\mu(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \ldots}}}}
\]

an infinite expression.

Class of explicit examples.

Semicircle law:

\[
\frac{1}{2\pi t} \sqrt{4t - x^2} 1_{[-2\sqrt{t}, 2\sqrt{t}]} \, dx.
\]
Semicircle law:

\[
\frac{1}{2\pi t} \sqrt{4t - x^2} 1_{[-2\sqrt{t}, 2\sqrt{t}]}(x) \, dx.
\]

Marchenko-Pastur distributions:

\[
\frac{1}{2\pi} \cdot \frac{\sqrt{4t - (x - 1 - t)^2}}{x} 1_{[\sqrt{1+t-2\sqrt{t}, 1+t+2\sqrt{t}}]}(x) \, dx.
\]
Semicircle law:

\[\frac{1}{2\pi t} \sqrt{4t - x^2} 1_{[-2\sqrt{t}, 2\sqrt{t}]} \, dx. \]

Marchenko-Pastur distributions:

\[\frac{1}{2\pi} \cdot \frac{\sqrt{4t - (x - 1 - t)^2}}{x} 1_{[1+t-2\sqrt{t}, 1+t+2\sqrt{t}]}(x) \, dx \]

\[+ \max(1 - t, 0) \delta_0. \]
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

\[\sum_{n=0}^{\infty} P_n(x) u^n = \frac{A(u)}{1 - B(u)x}. \]
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

\[
\sum_{n=0}^{\infty} P_n(x)u^n = \frac{A(u)}{1 - B(u)x}.
\]

In general: free Meixner distributions
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy
\[\sum_{n=0}^{\infty} P_n(x)u^n = \frac{A(u)}{1 - B(u)x}. \]

In general: free Meixner distributions

\[
\frac{1}{2\pi t} \cdot \frac{\sqrt{4(t+c) - (x-b)^2}}{1 + (b/t)x + (c/t^2)x^2}^1_{[b-2\sqrt{t+c}, b+2\sqrt{t+c}]} dx
\]

+0, 1, 2 atoms.
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

\[\sum_{n=0}^{\infty} P_n(x)u^n = \frac{A(u)}{1 - B(u)x}. \]

In general: free Meixner distributions

\[\frac{1}{2\pi t} \cdot \sqrt{\frac{4(t + c) - (x - b)^2}{1 + \frac{(b/t)x + (c/t^2)x^2}{1 + (b/t)x + (c/t^2)x^2}}} \left[b - 2\sqrt{t + c}, b + 2\sqrt{t + c} \right] \, dx \]

+ 0, 1, 2 atoms.

○ AC support an interval
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

$$\sum_{n=0}^{\infty} P_n(x) u^n = \frac{A(u)}{1 - B(u)x}.$$

In general: free Meixner distributions

$$\frac{1}{2\pi t} \cdot \sqrt{\frac{4(t + c) - (x - b)^2}{1 + (b/t)x + (c/t^2)x^2}} \left[b - 2\sqrt{t+c}, b + 2\sqrt{t+c} \right] dx$$

+ 0, 1, 2 atoms.

- AC support an interval

- $\sqrt{\text{polynomial}}$

- $\sqrt{\text{polynomial}}$
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

\[\sum_{n=0}^{\infty} P_n(x)u^n = \frac{A(u)}{1 - B(u)x}. \]

In general: free Meixner distributions

\[
\frac{1}{2\pi t} \cdot \frac{\sqrt{4(t+c) - (x-b)^2}}{1 + (b/t)x + (c/t^2)x^2} \int_{[b-2\sqrt{t+c}, b+2\sqrt{t+c}]} dx
\]

+ 0, 1, 2 atoms.

- AC support an interval
- \(\sqrt{\text{polynomial}} \)
- polynomial
- limited atoms
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy
\[\sum_{n=0}^{\infty} P_n(x) u^n = \frac{A(u)}{1 - B(u)x}. \]

In general: free Meixner distributions

\[\frac{1}{2\pi t} \cdot \frac{\sqrt{4(t + c) - (x - b)^2}}{1 + (b/t)x + (c/t^2)x^2} \mathbf{1}_{[b-2\sqrt{t+c}, b+2\sqrt{t+c}]} \, dx \]

\[+ 0, 1, 2 \text{ atoms.} \]

- AC support an interval
- \(\sqrt{\text{polynomial}} \)
- \(\text{polynomial} \)
- limited atoms
- outside of the AC support
Semicircular, Marchenko-Pastur orthogonal polynomials satisfy

$$\sum_{n=0}^{\infty} P_n(x)u^n = \frac{A(u)}{1 - B(u)x}.$$

In general: free Meixner distributions

$$\frac{1}{2\pi t} \cdot \frac{\sqrt{4(t + c) - (x - b)^2}}{1 + (b/t)x + (c/t^2)x^2} \int_{[b-2\sqrt{t+c},b+2\sqrt{t+c}]} dx$$

+ 0, 1, 2 atoms.

- AC support an interval

- $\sqrt{\text{polynomial}}$

- polynomial

- limited atoms

- outside of the AC support

- Not SC part
PERIODIC CONTINUED FRACTIONS.
PERIODIC CONTINUED FRACTIONS.

$$\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i.$$
PERIODIC CONTINUED FRACTIONS.

\[\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i. \]

\[H = G \text{ in} \]

\[G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\cdots}}}} \]

\[z - \beta_{n-1} - \gamma_n H \]
PERIODIC CONTINUED FRACTIONS.

\[\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i. \]

\[H = G \text{ in} \]

\[
G(z) = \cfrac{1}{z - \beta_0 - \cfrac{\gamma_1}{z - \beta_1 - \cfrac{\gamma_2}{z - \beta_2 - \cfrac{\gamma_3}{\ddots \quad z - \beta_{n-1} - \gamma_n H}}}}
\]

\[G = \frac{Q_n - \gamma_n Q_{n-1} G}{P_n - \gamma_n P_{n-1} G}. \]
PERIODIC CONTINUED FRACTIONS.

\[\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i. \]

\[H = G \text{ in} \]

\[G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\cdots}}}} \]

\[G = \frac{Q_n - \gamma_n Q_{n-1}G}{P_n - \gamma_n P_{n-1}G}. \]

\[\gamma_n P_{n-1}G^2 - (\gamma_n Q_{n-1} + P_n)G + Q_n = 0. \]
PERIODIC CONTINUED FRACTIONS.

\[\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i. \]

\[H = G \text{ in} \]

\[G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{\ddots}}}} \]

\[G = \frac{Q_n - \gamma_n Q_{n-1} G}{P_n - \gamma_n P_{n-1} G}. \]

\[\gamma_n P_{n-1} G^2 - (\gamma_n Q_{n-1} + P_n) G + Q_n = 0. \]

Quadratic equation!
PERIODIC CONTINUED FRACTIONS.

\[\beta_{i+n} = \beta_i, \quad \gamma_{i+n} = \gamma_i. \]

\[H = G \text{ in } \]

\[
G(z) = \frac{1}{z - \beta_0 - \frac{\gamma_1}{z - \beta_1 - \frac{\gamma_2}{z - \beta_2 - \frac{\gamma_3}{z - \beta_{n-1} - \gamma_n H}}}}
\]

\[G = \frac{Q_n - \gamma_n Q_{n-1} G}{P_n - \gamma_n P_{n-1} G}. \]

\[\gamma_n P_{n-1} G^2 - (\gamma_n Q_{n-1} + P_n) G + Q_n = 0. \]

Quadratic equation!

\[D = (\gamma_n Q_{n-1} + P_n)^2 - 4\gamma_n Q_n P_{n-1}. \]
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} \]
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} d\mu(x). \]

Stieltjes inversion formula:
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z - x} \, d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \Im G(x + iy). \]
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \ G(x + iy). \]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \]
\[G = \frac{\gamma_n Q_{n-1} + P_n - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \Im G(x + iy). \]

\(d\mu(x) > 0 \) if \(\sqrt{D(x)} \in i\mathbb{R} \), i.e. \(D < 0 \).
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z - x} d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \ G(x + iy). \]

\(d\mu(x) > 0 \) if \(\sqrt{D(x)} \in i\mathbb{R} \), i.e. \(D < 0 \).

\(D \) degree \(2n \), \(n \) intervals for \(D \leq 0 \).
\[G = \frac{\gamma_n Q_{n-1} + P_n - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} \, d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \, G(x + iy). \]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0. \]

\(D \) degree \(2n \), \(n \) intervals for \(D \leq 0 \).

No SC.
\[
G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} d\mu(x).
\]

Stieltjes inversion formula:

\[
d\mu(x) = \frac{1}{\pi} \lim_{y \to 0} \text{Im} \ G(x + iy).
\]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0.\]

\[D \text{ degree } 2n, n \text{ intervals for } D \leq 0.\]

No SC.

atoms: roots of \(P_{n-1}\), at most \((n - 1)\).
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} \, d\mu(x). \]

Stieltjes inversion formula:
\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \, G(x + iy). \]
\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0. \]

\(D \) degree 2n, n intervals for \(D \leq 0. \)

No SC.

atoms: roots of \(P_{n-1} \), at most \((n - 1) \).

Recall \(D = (\gamma_n Q_{n-1} + P_n)^2 - 4\gamma_n Q_n P_{n-1}. \)
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} \, d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \, G(x + iy). \]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0. \]

\[D \text{ degree } 2n, \text{ } n \text{ intervals for } D \leq 0. \]

No SC.

atoms: roots of \(P_{n-1} \), at most \((n - 1)\).

Recall \(D = (\gamma_n Q_{n-1} + P_n)^2 - 4\gamma_n Q_n P_{n-1} \).

So if \(P_{n-1}(a) = 0 \),
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z-x} d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \ G(x + iy). \]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0. \]

\(D \) degree \(2n \), \(n \) intervals for \(D \leq 0 \).

No SC.

atoms: roots of \(P_{n-1} \), at most \((n - 1) \).

Recall \(D = (\gamma_n Q_{n-1} + P_n)^2 - 4\gamma_n Q_n P_{n-1} \).

So if \(P_{n-1}(a) = 0 \), then \(D(a) \geq 0 \).
\[G = \frac{(\gamma_n Q_{n-1} + P_n) - \sqrt{D}}{2\gamma_n P_{n-1}} = \int \frac{1}{z - x} d\mu(x). \]

Stieltjes inversion formula:

\[d\mu(x) = -\frac{1}{\pi} \lim_{y \to 0} \text{Im} \, G(x + iy). \]

\[d\mu(x) > 0 \text{ if } \sqrt{D(x)} \in i\mathbb{R}, \text{ i.e. } D < 0. \]

\(D \) degree 2n, \(n \) intervals for \(D \leq 0 \).

No SC.

atoms: roots of \(P_{n-1} \), at most \((n - 1) \).

Recall \(D = (\gamma_n Q_{n-1} + P_n)^2 - 4\gamma_n Q_n P_{n-1} \).

So if \(P_{n-1}(a) = 0 \), then \(D(a) \geq 0 \).

Atoms outside of the AC support.
Eventually **constant** continued fractions \((n = 1)\)
Eventually **constant** continued fractions \((n = 1)\)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N.\]
Eventually **constant** continued fractions ($n = 1$)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\[\Leftrightarrow \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.} \]
Eventually \textbf{constant} continued fractions \((n = 1)\)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\[\Leftrightarrow \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.} \]

If \(\beta = 0, \gamma = 1\) (Peherstorfer?)
Eventually **constant** continued fractions \((n = 1)\)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\[\iff \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.} \]

If \(\beta = 0, \gamma = 1\) (Peherstorfer?)

Bernstein-Szegő class \(\frac{\sqrt{4 - x^2}}{\text{polynomial}}\) on \([-2, 2]\).
Eventually **constant** continued fractions \((n = 1)\)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\(\iff\) \(\frac{\sqrt{\text{polynomial}}}{\text{polynomial}}\) on one interval.

If \(\beta = 0, \gamma = 1\) (Peherstorfer?)

Bernstein-Szegő class \(\frac{\sqrt{4 - x^2}}{\text{polynomial}}\) on \([-2, 2]\).

Weyl’s Theorem.
Eventually \textbf{constant} continued fractions ($n = 1$)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\[\Leftrightarrow \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.} \]

If $\beta = 0, \gamma = 1$ (Peherstorfer?)

Bernstein-Szegő class $\frac{\sqrt{4 - x^2}}{\text{polynomial}}$ on $[-2, 2]$.

\hline

\textbf{Weyl’s Theorem.} If $\beta_i \to 0, \gamma_i \to 1$, \hline
Eventually **constant** continued fractions \((n = 1)\)

\[
\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N.
\]

\[
\Leftrightarrow \sqrt{\text{polynomial}}/\text{polynomial} \text{ on one interval.}
\]

If \(\beta = 0, \gamma = 1\) (Peherstoffer?)

Bernstein-Szegő class \(\sqrt{4 - x^2}/\text{polynomial} \text{ on } [-2, 2]\).

Weyl’s Theorem. If \(\beta_i \to 0, \gamma_i \to 1\), then

\[
\sigma_{ess}(\mu) = [-2, 2].
\]
Eventually **constant** continued fractions \((n = 1) \)

\[
\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N.
\]

\[\Leftrightarrow \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.}\]

If \(\beta = 0, \gamma = 1 \) (Peherstorfer?)

Bernstein-Szegő class \(\frac{\sqrt{4 - x^2}}{\text{polynomial}} \) on \([-2, 2]\).

Weyl’s Theorem. If \(\beta_i \to 0, \gamma_i \to 1 \), then

\[
\sigma_{\text{ess}}(\mu) = [-2, 2].
\]

Denisov-Rakhmanov Theorem.
Eventually **constant** continued fractions \((n = 1)\)

\[\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N. \]

\[\iff \sqrt{\text{polynomial}} \text{ polynomial on one interval.} \]

If \(\beta = 0, \gamma = 1\) (Peherstorfer?)

Bernstein-Szegő class \(\sqrt{4 - x^2} \text{ polynomial on } [-2, 2] \).

Weyl’s Theorem. If \(\beta_i \to 0, \gamma_i \to 1\), then

\[\sigma_{ess}(\mu) = [-2, 2]. \]

Denisov-Rakhmanov Theorem. If

\[\sigma_{ess}(\mu) = \text{AC support of } \mu = [-2, 2], \]
Eventually **constant** continued fractions ($n = 1$)

$$\beta_i = \beta, \gamma_i = \gamma \text{ for } i \geq N.$$

$$\iff \frac{\sqrt{\text{polynomial}}}{\text{polynomial}} \text{ on one interval.}$$

If $\beta = 0, \gamma = 1$ (Peherstorfer?)

Bernstein-Szegő class $\frac{\sqrt{4 - x^2}}{\text{polynomial}}$ on $[-2, 2]$.

Weyl’s Theorem. If $\beta_i \to 0, \gamma_i \to 1$, then

$$\sigma_{ess}(\mu) = [-2, 2].$$

Denisov-Rakhmanov Theorem. If

$$\sigma_{ess}(\mu) = \text{AC support of } \mu = [-2, 2],$$

then $\beta_i \to 0, \gamma_i \to 1$.

109
Eventually periodic
Eventually periodic $\Rightarrow \sqrt{\text{polynomial}} \over \text{polynomial}$ on n intervals.
Eventually periodic $\Rightarrow \sqrt{\text{polynomial}}$ on n intervals.
Eventually periodic $\Rightarrow \frac{\sqrt{\text{polynomial}}}{\text{polynomial}}$ on n intervals.

$\frac{\sqrt{\text{polynomial}}}{\text{polynomial}}$ on n intervals $\not\Rightarrow$ eventually periodic.
Eventually periodic $\Rightarrow \sqrt[\text{polynomial}]{\text{polynomial}}$ on n intervals.

$\sqrt[\text{polynomial}]{\text{polynomial}}$ on n intervals $\not\Rightarrow$ eventually periodic.

Weyl: if $\{\beta_i, \gamma_i\}$ asymptotically periodic, same essential spectrum as for actually periodic.
Eventually periodic \(\Rightarrow \sqrt{\text{polynomial}}\) on \(n\) intervals.

\(\sqrt{\text{polynomial}}\) on \(n\) intervals \(\not\Rightarrow\) eventually periodic.

Weyl: if \(\{\beta_i, \gamma_i\}\) asymptotically periodic, same essential spectrum as for actually periodic.

Converse false.
Eventually periodic $\Rightarrow \sqrt{\text{polynomial}}$ on n intervals.

$\sqrt{\text{polynomial}}$ on n intervals $\not\Rightarrow$ eventually periodic.

Weyl: if $\{\beta_i, \gamma_i\}$ asymptotically periodic, same essential spectrum as for actually periodic.

Converse false.

Last, Simon: if $\{\beta_i, \gamma_i\}$ approaches the isospectral torus of a periodic sequence, same essential spectrum.
Eventually periodic \Rightarrow polynomial polynomial on n intervals.

\[\text{polynomial polynomial on } n \text{ intervals } \not\Rightarrow \text{eventually periodic}. \]

Weyl: if $\{\beta_i, \gamma_i\}$ asymptotically periodic, same essential spectrum as for actually periodic.

Converse false.

Last, Simon: if $\{\beta_i, \gamma_i\}$ approaches the isospectral torus of a periodic sequence, same essential spectrum.

Damanik, Killip, Simon: converse true.
QUESTIONS.
QUESTIONS.

• Connection between random matrices and (eventually) periodic continued fractions (Pastur).
QUESTIONS.

• Connection between random matrices and (eventually) periodic continued fractions (Pastur).

• Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
Questions.

- Connection between random matrices and (eventually) periodic continued fractions (Pastur).

- Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
 - All exist.
Questions.

- Connection between random matrices and (eventually) periodic continued fractions (Pastur).

- Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
 - All exist.
 - Continued fractions *matricial.*
Questions.

• Connection between random matrices and (eventually) periodic continued fractions (Pastur).

• Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.

 ○ All exist.

 ○ Continued fractions *matricial*.

• Formulas for states with periodic continued fractions.
QUESTIONS.

- Connection between random matrices and (eventually) periodic continued fractions (Pastur).

- Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
 - All exist.
 - Continued fractions *matricial*.

- Formulas for states with periodic continued fractions.
 - Free Meixner states known; “constant” after step 2.
QUESTIONS.

• Connection between random matrices and (eventually) periodic continued fractions (Pastur).

• Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
 ○ All exist.
 ○ Continued fractions *matricial*.

• Formulas for states with periodic continued fractions.
 ○ Free Meixner states known; “constant” after step 2.
 ○ If not formulas for states, description of their operator algebras.
Questions.

- Connection between random matrices and (eventually) periodic continued fractions (Pastur).

- Multivariate (non-commutative) orthogonal polynomials, states, continued fractions.
 - All exist.
 - Continued fractions *matricial*.

- Formulas for states with periodic continued fractions.
 - Free Meixner states known; “constant” after step 2.
 - If not formulas for states, description of their operator algebras.

- Connection between multi-matrix models and states with multivariate (eventually) periodic continued fractions.