Polynomials, simple and complex

Michael Anshelevich

Texas A&M University

November 16, 2011
Part I.
Parameters: \(a, b, c \in \mathbb{R}\) and \(t \geq 0\).
Meixner polynomials.

Parameters: $a, b, c \in \mathbb{R}$ and $t \geq 0$.

Polynomials $\{P_n : n \geq 0\}$: defined by $P_0 = 1$, $P_1 = x - at$, and the recursion

$$P_{n+1}(x) = xP_n(x) - (at + (b + c)n)P_n(x) - n(t + bc(n - 1))P_{n-1}(x).$$
Meixner polynomials.

Parameters: \(a, b, c \in \mathbb{R}\) and \(t \geq 0\).

Polynomials \(\{P_n : n \geq 0\}\): defined by \(P_0 = 1\), \(P_1 = x - at\), and the recursion

\[
P_{n+1}(x) = xP_n(x) - (at + (b + c)n)P_n(x) - n(t + bc(n - 1))P_{n-1}(x).
\]

Linear functional \(\varphi : \mathbb{C}[x] \rightarrow \mathbb{C}\): defined by

\[
\varphi[1] = 1, \quad \varphi[P_n(x)] = 0 \text{ for } n > 0.
\]
Moments.

Facts.

1. \(\varphi \) arises from a (probability) measure \(\mu \):

\[
\varphi[Q(x)] = \int_{\mathbb{R}} Q(x) \, d\mu(x).
\]

Measures \(\mu_{a,b,c,t} \) look quite different.
Facts.

1. \(\varphi \) arises from a (probability) measure \(\mu \):

\[
\varphi[Q(x)] = \int_{\mathbb{R}} Q(x) \, d\mu(x).
\]

Measures \(\mu_{a,b,c,t} \) look quite different.

2. We have not only \(\varphi[P_n] = 0 \) but

\[
\varphi[P_nP_k] = 0 \text{ for } n \neq k
\]

(polynomials are \textbf{orthogonal}).
Moments.

Facts.

1. φ arises from a (probability) measure μ:

$$\varphi[Q(x)] = \int_{\mathbb{R}} Q(x) \, d\mu(x).$$

Measures $\mu_{a,b,c,t}$ look quite different.

2. We have not only $\varphi[P_n] = 0$ but

$$\varphi[P_n P_k] = 0 \text{ for } n \neq k$$

(polynomials are orthogonal).

3. The n’th moment of φ

$$\varphi[x^n] = \text{Polynomial in } a, b, c, t \text{ with positive integer coefficients.}$$
\[\pi \in S(n) = \text{permutation}. \] Write it in the cycle notation. Let \(1 \leq i \leq n \).

\[i = \begin{cases}
\text{fixed point of } \pi & \text{if } \pi(i) = i, \\
\text{ascent of } \pi & \text{if } \pi(i) > i, \\
\text{descent of } \pi & \text{if } \pi(i) < i.
\end{cases} \]
Permutation statistics.

\[\pi \in S(n) = \text{permutation}. \text{ Write it in the cycle notation. Let } 1 \leq i \leq n. \]

\[
i = \begin{cases}
\text{fixed point of } \pi & \text{if } \pi(i) = i, \\
\text{ascent of } \pi & \text{if } \pi(i) > i, \\
\text{descent of } \pi & \text{if } \pi(i) < i.
\end{cases}
\]

Theorem. (Kim, Zeng 2001)

For the functional \(\varphi \) from before,

\[
\varphi[x^n] = \sum_{\pi \in S(n)} a^\#\text{fixed points} b^\#\text{ascents} c^\#\text{descents} t^\#\text{cycles}.
\]
Set \(a = b = c = 1 \). Recursion

\[
P_{n+1}(x) = xP_n(x) - (t + 2n)P_n(x) - n(t + (n - 1))P_{n-1}(x).
\]

Laguerre polynomials. Orthogonality measure: Gamma distribution

\[
d\mu(x) = \frac{1}{\Gamma(t)} x^{t-1} e^{-x} 1_{[0,\infty)}(x) \, dx.
\]
Example: Gamma.

Set \(a = b = c = 1 \). Recursion

\[
P_{n+1}(x) = xP_n(x) - (t + 2n)P_n(x) - n(t + (n - 1))P_{n-1}(x).
\]

Laguerre polynomials. Orthogonality measure:
Gamma distribution

\[
d\mu(x) = \frac{1}{\Gamma(t)} x^{t-1} e^{-x} 1_{[0,\infty)} \, dx.
\]

Thus

\[
\varphi[x^n] = \sum_{\pi \in S(n)} t^{\# \text{cycles}}.
\]
Example: Gamma.

Set $a = b = c = 1$. Recursion

$$P_{n+1}(x) = xP_n(x) - (t + 2n)P_n(x) - n(t + (n - 1))P_{n-1}(x).$$

Laguerre polynomials. Orthogonality measure: Gamma distribution

$$d\mu(x) = \frac{1}{\Gamma(t)} x^{t-1} e^{-x} \mathbf{1}_{[0,\infty)} dx.$$

Thus

$$\varphi[x^n] = \sum_{\pi \in S(n)} t^{\#\text{cycles}}.$$

In particular, for $t = 1$, $\int_0^\infty x^n e^{-x} dx = n!.$
Example: derangements.

Set instead $a = 0$, $b = c = 1$, $t = 1$. Recursion

$$P_{n+1}(x) = xP_n(x) - 2n P_n(x) - n^2 P_{n-1}(x).$$

Shifted Laguerre polynomials. Orthogonality measure: shifted Gamma distribution

$$d\mu(x) = e^{-x-1}1_{[-1,\infty)} \, dx.$$
Example: derangements.

Set instead \(a = 0, b = c = 1, t = 1\). Recursion

\[
P_{n+1}(x) = xP_n(x) - 2n P_n(x) - n^2 P_{n-1}(x).
\]

Shifted Laguerre polynomials. Orthogonality measure: shifted Gamma distribution

\[
d\mu(x) = e^{-x-1}1_{[-1,\infty)} \, dx.
\]

\(\pi \in S(n)\) with no fixed points \(\leftrightarrow\) Derangements \(\pi \in \mathcal{D}(n)\).
Example: derangements.

Set instead $a = 0, b = c = 1, t = 1$. Recursion

$$P_{n+1}(x) = xP_n(x) - 2nP_n(x) - n^2 P_{n-1}(x).$$

Shifted Laguerre polynomials. Orthogonality measure: shifted Gamma distribution

$$d\mu(x) = e^{-x-1}1_{[-1,\infty)} \, dx.$$

$$\pi \in S(n) \text{ with no fixed points} \iff \text{Derangements } \pi \in \mathcal{D}(n).$$

Thus

$$\int_{-1}^{\infty} x^n e^{-x-1} \, dx = \int_{0}^{\infty} (x - 1)^n e^{-x} \, dx = |\mathcal{D}(n)|.$$

Note: no formula for this number.
Example: Poisson.

Set $a = b = 1$, $c = 0$. Recursion

$$P_{n+1}(x) = xP_n(x) - (t + n)P_n(x) - nt P_{n-1}(x).$$

Charlier polynomials. Orthogonality measure: Poisson distribution

$$d\mu(x) = e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \delta_k(x).$$
Example: Poisson.

Set \(a = b = 1, \ c = 0 \). Recursion

\[
P_{n+1}(x) = xP_n(x) - (t + n)P_n(x) - nt \ P_{n-1}(x).
\]

Charlier polynomials. Orthogonality measure: Poisson distribution

\[
d\mu(x) = e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \delta_k(x).
\]

\(\pi \in S(n) \) with (\# descents = \#cycles) \(\leftrightarrow \) Partitions \(\pi \in \mathcal{P}(n) \).

Thus

\[
\varphi[x^n] = \sum_{\pi \in \mathcal{P}(n)} t^{\# \text{subsets}}.
\]
Example: Gaussian.

Set \(a = b = c = 0 \). Recursion

\[
P_{n+1}(x) = xP_n(x) - nt P_{n-1}(x).
\]

Hermite polynomials. Orthogonality measure: Gaussian (or normal) distribution

\[
d\mu(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} dx.
\]
Example: Gaussian.

Set \(a = b = c = 0 \). Recursion

\[
P_{n+1}(x) = xP_n(x) - nt\ P_{n-1}(x).
\]

Hermite polynomials. Orthogonality measure: Gaussian (or normal) distribution

\[
d\mu(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} \, dx.
\]

\[
\left(\pi \in S(n) \text{ with no fixed points and} \atop \# \text{ ascents} = \# \text{ descents} = \# \text{cycles} \right) \leftrightarrow \text{Pairings } \pi \in P_2(n).
\]
Example: Gaussian.

\[
\left(\pi \in S(n) \text{ with no fixed points and} \right) \quad \left(\# \text{ ascents} = \# \text{ descents} = \# \text{cycles} \right) \quad \leftrightarrow \quad \text{Pairings } \pi \in \mathcal{P}_2(n).
\]

Thus

\[
\varphi[x^n] = \sum_{\pi \in \mathcal{P}_2(n)} t^{\# \text{pairs}}
\]

Zero if \(n \) odd.

\[
\varphi[x^{2n}] = t^n |\mathcal{P}_2(n)| = (2n - 1)(2n - 3) \ldots 3 \cdot 1 \cdot t^n.
\]
A new wrinkle: Instead of using $n \in \mathbb{N}$, use

$$[n]_q = 1 + q + q^2 + \ldots + q^{n-1} = \frac{1 - q^n}{1 - q}. $$

q-integers (Ramanujan, quantum groups, etc.)
A new wrinkle: Instead of using $n \in \mathbb{N}$, use

$$[n]_q = 1 + q + q^2 + \ldots + q^{n-1} = \frac{1 - q^n}{1 - q}.$$

q-integers (Ramanujan, quantum groups, etc.)

As before define $\{P_n : n \geq 0\}$ by

$$P_{n+1}(x) = x P_n(x) - (at + (b + c)[n]_q) P_n(x) - [n]_q (t + bc[n - 1]_q) P_{n-1}(x).$$

Again orthogonal polynomials for a measure $\mu = \mu_{a,b,c,t,q}$.
A new wrinkle: Instead of using $n \in \mathbb{N}$, use

$$[n]_q = 1 + q + q^2 + \ldots + q^{n-1} = \frac{1 - q^n}{1 - q}.$$

q-integers (Ramanujan, quantum groups, etc.)

As before define $\{P_n : n \geq 0\}$ by

$$P_{n+1}(x) = xP_n(x) - (at + (b + c)[n]_q)P_n(x) - [n]_q(t + bc[n - 1]_q)P_{n-1}(x).$$

Again orthogonal polynomials for a measure $\mu = \mu_{a,b,c,t,q}$.

Moments of μ? Answer seems to involve crossings.
Crossings.

q-Gaussian case [Ismail, Stanton, Viennot 1987]:

\[P_{n+1}(x) = xP_n(x) - [n]_q t P_{n-1}(x). \]

(q-Hermite polynomials, Rogers (1894)). Moments:

\[\varphi[x^{2n}] = t^n \sum_{\pi \in \mathcal{P}_2(2n)} q^{\# \text{crossings in the pairing}}. \]
Crossings.

\(q\)-Gaussian case [Ismail, Stanton, Viennot 1987]:

\[P_{n+1}(x) = x P_n(x) - [n]_q t P_{n-1}(x). \]

\((q\text{-Hermite polynomials, Rogers (1894))}. \) Moments:

\[\varphi[x^{2n}] = t^n \sum_{\pi \in \mathcal{P}_2(2n)} q^{\# \text{crossings in the pairing}}. \]

\(q\)-Poisson case [A 2005], [Kim, Stanton, Zeng 2006]:

\[P_{n+1}(x) = x P_n(x) - (t + [n]_q) P_n(x) - [n]_q t P_{n-1}(x). \]

Moments:

\[\varphi[x^n] = \sum_{\pi \in \mathcal{P}(n)} t^{\# \text{subsets}} q^{\# \text{crossings in a partition}}. \]
Full case: unknown. Difficulty: how to count crossings of a permutation.

Have an approach (linked partitions), want to start work soon.
Full case: unknown. Difficulty: how to count crossings of a permutation.

Have an approach (linked partitions), want to start work soon.

More general question: Linearization coefficients

\[\varphi[P_{n_1} P_{n_2} \ldots P_{n_k}] . \]

Again expect combinatorial interpretations!
Why do analysts care?

\(a, b, c\) some parameters.

\[t = \text{convolution parameter} = \text{time parameter}. \]
Why do analysts care?

\(a, b, c\) some parameters.

\[t = \text{convolution parameter} = \text{time parameter}. \]

Recall: Gaussian, Poisson, Gamma

\[
\begin{align*}
\text{d}\mu_t(x) &= \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} \, dx, \\
&= e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!}\delta_k(x), \\
&= x^{t-1} e^{-x} 1_{[0,\infty)} \, dx.
\end{align*}
\]
Why do analysts care?

a, b, c some parameters.

\[t = \text{convolution parameter} = \text{time parameter}. \]

Recall: Gaussian, Poisson, Gamma

\[
d\mu_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} \, dx, \quad e^{-t} \sum_{k=0}^{\infty} \frac{t^k}{k!} \delta_k(x), \quad x^{t-1} e^{-x} 1_{[0, \infty)} \, dx.
\]

In each case, form a \textbf{convolution semigroup}:

\[
\mu_t * \mu_s = \mu_{t+s},
\]

where (roughly)

\[
d(\mu * \nu)(x) = \int_{\mathbb{R}} \mu(y-x) \, d\nu(y).
\]

Thus Combinatorics comes from Analysis.
Independence.

Even more: if X, Y are independent random variables, with distributions μ_X, μ_Y, the distribution of the sum is the convolution:

$$\mu_{X+Y} = \mu_X * \mu_Y.$$

So a convolution semigroup of measures $\{\mu_t : t \geq 0\}$

comes from a process with independent increments $\{X(t) : t \geq 0\}$.

Thus Analysis comes from Probability.
Stochastic integrals.

Fancier relations:
Stochastic integrals.

Fancier relations:

\[H_n(X(t)) \]

(Hermite polynomial of a Brownian motion)
Stochastic integrals.

Fancier relations:

\[H_n(X(t)) \]

(Hermite polynomial of a Brownian motion)

\[= \int_{0 \leq t_1 \leq t_2 \leq \ldots \leq t_n \leq t} dX(t_1) \, dX(t_2) \ldots \, dX(t_n) \]

(multiple stochastic integral)
Stochastic integrals.

Fancier relations:

\[H_n(X(t)) \]

(Hermite polynomial of a Brownian motion)

\[= \int_{0 \leq t_1 \leq t_2 \leq \ldots \leq t_n \leq t} dX(t_1) dX(t_2) \ldots dX(t_n) \]

(multiple stochastic integral)

\[= W \left(a(t) + a^*(t), a(t) + a^*(t), \ldots, a(t) + a^*(t) \right) \]

(Wick product on a Fock space).
Probability theories.

Gaussian, Poisson, Gamma come from Probability. $q = 1$ case. Well understood.
Gaussian, Poisson, Gamma come from Probability. $q = 1$ case. Well understood.

Another well-understood case: $q = 0$. t again a time parameter, but with respect to the operation of free convolution \boxplus. Arises from free independence. All in the context of Free Probability (Voiculescu 1986).
Probability theories.

Gaussian, Poisson, Gamma come from Probability. $q = 1$ case. Well understood.

Another well-understood case: $q = 0$. t again a time parameter, but with respect to the operation of free convolution \boxplus. Arises from free independence. All in the context of Free Probability (Voiculescu 1986).

General q? “q-deformed” probability? Gaussian, Poisson case well understood [Bożejko, Kümmnerer, Speicher 1997] [A 2001], used in proofs above. In general, no. Processes with q-independent increments?

My approach (Analysis / Probability): full Meixner case $q = 1$, moments only (unpublished).

General q, linearization coefficients, Gaussian and Poisson only (2005).

My approach (Analysis / Probability): full Meixner case $q = 1$, moments only (unpublished).

General q, linearization coefficients, Gaussian and Poisson only (2005).

Part II.
Matrix-valued polynomials.

Polynomials: spanned by monomials Ax^n, for $A \in \mathbb{R}$ or \mathbb{C}.
Matrix-valued polynomials.

Polynomials: spanned by monomials Ax^n, for $A \in \mathbb{R}$ or \mathbb{C}.

What if $A \in \mathcal{A}$, for

$$\mathcal{A} = \text{algebra, matrix algebra, } C^*-\text{algebra, etc.}$$

So that

$$(Ax^n)(Bx^k) = (AB)x^{n+k} \neq (BA)x^{n+k}.$$

Orthogonal polynomials?
Matrix-valued polynomials.

Polynomials: spanned by monomials Ax^n, for $A \in \mathbb{R}$ or \mathbb{C}.

What if $A \in \mathcal{A}$, for

$$\mathcal{A} = \text{ algebra, matrix algebra, } C^*\text{-algebra, etc.?}$$

So that

$$(Ax^n)(Bx^k) = (AB)x^{n+k} \neq (BA)x^{n+k}.$$

Orthogonal polynomials?

Interesting theory already for $\mathcal{A} = M_{2 \times 2}$, connected to random walks.

Difficulty: Gram-Schmidt does not always work.

$$P_2(x) = x^2 - \frac{\varphi[x^2P_1(x)]}{\varphi[P_1(x)^2]}P_1(x) - \varphi[x^2]$$

but may have $\varphi[P_1(x)^2] \in M_{2 \times 2}$ non-zero but not invertible.
Operator-valued polynomials.

\(\mathcal{A} \) non-commutative, but \(Ax = xA \). Free probability: \textit{maximally} non-commutative. Thus instead of \(\mathcal{A}[x] \) want \(\mathcal{A}\langle x \rangle \) spanned by

\[A_0xA_1xA_2\ldots A_{n-1}xA_n. \]
Operator-valued polynomials.

\mathcal{A} non-commutative, but $Ax = xA$. Free probability: \textit{maximally} non-commutative. Thus instead of $\mathcal{A}[x]$ want $\mathcal{A}\langle x \rangle$ spanned by

$$A_0 x A_1 x A_2 \ldots A_{n-1} x A_n.$$

To even prove \textit{existence} of orthogonal polynomials, one needs free probability (Fock space constructions). Gram-Schmidt does not even make sense. New objects, little known about them. Both algebraic and analytic difficulties. Joint work with Belinschi, Popa, etc.