Abstract

A very simple model of a growing aggregate is considered. It is governed by a parameter η, and it turns out that for $\eta \leq 1$ the system grows uniformly while for $\eta > 1$ the system grows almost exclusively in one direction.

Introduction

Consider the following model: we have N parallel sticks of integer length, and at integer moments exactly one stick grows by 1, with the probability of k-th stick growing proportional to a fixed power η of its length, properly normalized. Equivalently, we consider sequences of points of the first quadrant of \mathbb{R}^n such that on each step exactly one of the coordinates of the point gets incremented by 1, and the probability of k-th coordinate being incremented is

$$V_k(x) = \frac{x_k^\eta}{\sum_{k=1}^N x_k^\eta}$$

The behavior of the system depends on the value of η, specifically it is different for $\eta > 1, \eta = 1, \eta < 1$.

The (slight) similarity with the standard DLA model becomes apparent if we consider the sticks as growing radially away from the center a circle.

We consider the following question: start with point $(1, 1, \ldots, 1)$. Will the coordinates grow uniformly, or will random perturbations result in predominantly one of the coordinates growing? For example, for $\eta = \infty$ the coordinate which has grown on the first step will continue growing, while for $\eta = 0$ all the coordinates will grow at equal rate. It will turn out that the coordinates will grow uniformly for $\eta \leq 1$ and only one of the coordinates will grow for $\eta > 1$.

Results

Define the transition probability $V(x)$ on the first quadrant of \mathbb{R}^n as in formula (1):

$$V_k(x) = \frac{x_k^\eta}{\sum_{k=1}^N x_k^\eta}, \quad k=1,2,\ldots,N$$

Let $P_t(x,y)$ be the probability of getting from initial point x to point y in t steps. Then P_t satisfies the recursive equations
(2) \[P_{t+1}(x, y) = \sum_{k=1}^{N} P_t(x + e_k, y) \cdot V_k(x) \]

and

(3) \[P_{t+1}(x, y) = \sum_{k=1}^{N} P_t(x, y - e_k) \cdot V_k(y - e_k) \]

Define the first and second momenta

(4) \[M(t, x) = \sum_y P_t(x, y) \cdot (y - x) \]

(5) \[D(t, x) = \sum_y \|y - x\|^2 \cdot P_t(x, y) \]

Then the following difference equations hold:

(6) \[M(t + 1, x) = \sum_y (y - x) \cdot P_{t+1}(x, y) = \]

\[= \sum_y (y - x) \cdot \sum_{k=1}^{N} P_t(x + e_k, y) \cdot V_k(x) = \]

\[= \sum_{k=1}^{N} \sum_y |y - (x + e_k) + e_k| \cdot V_k(x) \cdot P_t(x + e_k, y) = \]

\[= \sum_{k=1}^{N} \left[V_k(x) \cdot \sum_y |y - (x + e_k)| \cdot P_t(x + e_k, y) + V_k \cdot e_{kl} \right] = \]

\[= \sum_{k=1}^{N} V_k(x) \cdot M(t, x + e_k) + V(x) \]

(7) \[M(t + 1, x) = \sum_y (y - x + e_k) \cdot \sum_{k=1}^{N} P_t(x, y) \cdot V_k(y) = \]

\[= \sum_y \left[(y - x) \cdot P_t(x, y) \cdot \sum_{k=1}^{N} V_k(y) + P_t(x, y) \cdot e_k \cdot V_k(y) \right] = \]

\[= M(t, x) + \sum_y V(y) \cdot P_t(x, y) \]
\[D(t + 1, x) = \sum_{y} \|y - x\|^2 \cdot P_{i+1}(x, y) = \]
\[= \sum_{y} \sum_{k=1}^{N} \|y - (x + e_k) + e_k\|^2 \cdot V_k(x) \cdot P_i(x + e_k, y) = \]
\[= \sum_{k=1}^{N} \left[V_k(x) \cdot \sum_{y} \|y - (x + e_k)\|^2 \cdot P_i(x + e_k, y) + 2 V_k(x) \cdot \left(\sum_{y} \|y - (x + e_k)\| \cdot P_i(x + e_k, y), e_k \right) + V_k \right] = \]
\[= \sum_{k=1}^{N} V_k(x) \cdot D(t, x + e_k) + 2 \sum_{k=1}^{N} V_k(x) \cdot M_k(t, x + e_k) + 1 \]

(9) \[D(t + 1, x) = \sum_{y} \sum_{k=1}^{N} \|y + e_k - x\|^2 \cdot P_i(x, y) \cdot V_k(y) = \]
\[= \sum_{y} \sum_{k=1}^{N} V_k(y) \cdot \left[\|y - x\|^2 + 2(y - x)_k + 1 \right] \cdot P_i(x, y) = \]
\[= \sum_{y} \left[\|y - x\|^2 \cdot P_i(x, y) \cdot \sum_{k=1}^{N} V_k(y) + 2 \langle V(y), (y - x) \cdot P_i(x, y) \rangle + P_i(x, y) \cdot \sum_{k=1}^{N} V_k(y) \right] = \]
\[= D(t, x) + 2 \sum_{y} \langle V(y), (y - x) \rangle \cdot P_i(x, y) + 1 \]

Denote \(|x|_\eta = \sum_{k=1}^{N} x_k^\eta \)

For \(\eta = 1 \) equation (4) becomes

\[M(t + 1, x) = M(t, x) + \frac{1}{|x|_1 + t} \sum_{y} y \cdot P_i(x, y) = \]
\[= \left(1 + \frac{1}{|x|_1 + t} \right) \cdot M(t, x) + \frac{1}{|x|_1 + t} x \]

Also, \(M(0, x) = 0 \)

Hence \(M(t, x) = \frac{t}{|x|_1} x \) is the solution

Therefore equation (6) becomes
D(t+1, x) = D(t, x) + \frac{1}{|x|_1 + t} \cdot \sum_y (y - x) \cdot P_t(x, y) + 1

D(t+1, x) = D(t, x) + \frac{2}{|x|_1 + t} \cdot \sum_y \left[\|y - x\|^2 + \langle x, y - x \rangle \right] \cdot P_t(x, y) + 1

D(t+1, x) = \left(1 + \frac{2}{|x|_1 + t} \cdot (\|x\|^2 + \langle x, M(t, x) \rangle) \right) \cdot D(t, x) + \frac{2}{|x|_1 + t} \langle x, M(t, x) \rangle + 1

Substituting the formula for M, get

D(t+1, x) - D(t, x) = \frac{2}{|x|_1 + t} \left(D(t, x) + \frac{\|x\|^2}{|x|_1} \cdot t \right) + 1

If D(t, x) = a(x)t^2 + b(x)t + c(x) then

\begin{align*}
c(x) &= D(0, x) = 0 \\
2a(x)t + (a(x) + b(x)) &= (2a(x)\|x\|^2 + (a(x) + b(x))\|x\|) = 2b(x)t + 2\|x\|^2 + t + \|x\|_1
\end{align*}

\begin{align*}
\left\{ \\
2a(x)|x|_1 + a(x) + b(x) - b(x) - 1 - 2\|x\|^2 = 0 \\
a(x) + b(x) = 1 \\
a(x) \cdot (2|x|_1 + 2) = 2 + 2\|x\|^2 \\
b(x) = 1 - a(x)
\right. \\
a(x) = \frac{\|x\|^2 + |x|_1}{|x|_1 \cdot (|x|_1 + 1)}

b(x) = \frac{|x|_1^2 - \|x\|^2}{|x|_1 \cdot (|x|_1 + 1)}

D(t, x) = \frac{\|x\|^2 + |x|_1}{|x|_1 \cdot (|x|_1 + 1)} \cdot t^2 + \frac{|x|_1^2 - \|x\|^2}{|x|_1 \cdot (|x|_1 + 1)} \cdot t

In particular for x lying on the main diagonal

x = (m, m, ..., m)

M(t, x) = \left(\frac{t}{N}, \frac{t}{N}, ..., \frac{t}{N} \right)

D(t, x) = \frac{m + 1}{Nm + 1} \cdot t^2 + \frac{Nm - m}{Nm + 1} \cdot t = \frac{m + 1}{N} \cdot \left(\frac{t}{\sqrt{N}} \right)^2 + \frac{1 - \frac{1}{N}}{1 + \frac{1}{Nm}} \cdot t = \left(\frac{t}{\sqrt{N}} \right)^2
For $m = 1$

$$D(t, x) = \frac{2}{1 + \frac{1}{N}} \cdot \left(\frac{t}{\sqrt{N}}\right)^2 + \frac{1 - \frac{1}{N}}{1 + \frac{1}{N}} t \approx 2 \left(\frac{t}{\sqrt{N}}\right)^2$$

More precisely, if

$$\frac{t(N)}{N} \to \infty \quad \text{as} \quad N \to \infty,$$

then

$$D(t, x) \rightarrow 1 \quad \text{as} \quad N \to \infty$$

This means that on the average the coordinates of the point are uniform. Indeed,

$$D(t, x) = \sum_{y} \|y - x\|^2 \cdot P_t(x, y) = \sum_{y} \sum_{k=1}^{N} \left[\left(y_k - x_k - \frac{t}{N}\right) + \frac{t}{N}\right]^2 \cdot P_t(x, y) =$$

$$= \frac{t^2}{N} + \sum_{y} \sum_{k=1}^{N} \left[\left(y_k - x_k - \frac{t}{N}\right)\right]^2 \cdot P_t(x, y) \geq \frac{t^2}{N},$$

with equality achieved only if $y_k - x_k = \frac{t}{N}$.

It follows that for $\eta < 1$ the coordinates also will be uniform.

For $\eta > 1$, in order to use the equation (8)

$$D(t + 1, x) = \sum_{k=1}^{N} V_k(x) D(t, x + e_k) + 2 \sum_{k=1}^{N} V_k(x) M_k(t, x + e_k) + 1$$

we need $M_k(t, x + e_k)$.

We make the following approximation:

instead of equation (6) we consider the corresponding partial differential equation:
\[M(t+1, x) = V(x) + \sum_{k=1}^{N} V_k(x) \cdot M(t, x + e_k) \]

\[M(t+1, x) - M(t, x) = V(x) + \sum_{k=1}^{N} V_k(x) \cdot (M(t, x + e_k) - M(t, x)) \]

(9) \[\frac{\partial M}{\partial t}(t, x) = V(x) + \sum_{k=1}^{N} V_k(x) \cdot \frac{\partial M}{\partial x_k}(t, x) \]

\[\frac{dM}{ds}(t(s), x(s)) = V(x(s)), \text{ where } \frac{dt}{ds} = 1; \frac{dx}{ds} = -V_k(x(s)) \]

Hence \[\frac{d(M + x)}{ds}(s) = 0 \]

But \[V_k(x) = \frac{x_k^n}{\left|x\right|_\eta} \]

Hence the integral curves of the equation for x differ only in parameterisation from those of

\[\frac{dx}{d\tau} = -U_k(x(\tau)), U_k(x) = x_k^n \]

\[\frac{dx}{d\tau} = -x_k^n \]

\[-x_k^{-\eta} dx_k = d\tau \quad (\eta \neq 1) \]

\[\frac{1}{1-\eta} x_k^{1-\eta} = \tau + C_k \]

\[x_k = -(1-\eta)^{1-\eta}(\tau + C_k)^{1-\eta} \]

with \(s(\tau) = \sum_{k=1}^{N} x_k(\tau) \)

Thus finally

\[(M + x)_k = (1-\eta)^{1-\eta}(\tau + C_k)^{1-\eta} \]

with \(\tau \) given by \(t(\tau) = \sum_{k=1}^{N} M_k(\tau) \) and \(C_k = C_k(x) \)

Note that \(\tau = \frac{1}{1-\eta} (M_k + x_k)^{1-\eta} - C_k \), hence

\[C_k - C_i = \frac{1}{1-\eta} (M_k + x_k)^{1-\eta} - \frac{1}{1-\eta} (M_i + x_i)^{1-\eta} \]
This is true, for example, for $t = 0$, hence
\[
\frac{1}{1-\eta} x_k^{1-\eta} - \frac{1}{1-\eta} x_i^{1-\eta} = \frac{1}{1-\eta} (M_k + x_k)^{1-\eta} - \frac{1}{1-\eta} (M_i + x_i)^{1-\eta}
\]
\[
x_k^{1-\eta} - x_i^{1-\eta} = (M_k + x_k)^{1-\eta} - (M_i + x_i)^{1-\eta}
\]
Let $\alpha = \eta - 1$
\[
x_k^{-\alpha} - x_i^{-\alpha} = (M_k + x_k)^{-\alpha} - (M_i + x_i)^{-\alpha}
\]
For $x = (m + 1, m, m, \ldots, m)$
\[
m^{-\alpha} - (m + 1)^{-\alpha} = (M_k + m)^{-\alpha} - (M_l + m + 1)^{-\alpha}
\]
and $t = M_l + (N - 1)M_k$
\[
M_k = \frac{1}{\left(\frac{1}{m^{\alpha}} - \frac{1}{(m + 1)^{\alpha}} + \frac{1}{(M_l + m + 1)^{\alpha}}\right)^{1/\alpha}} - m < \frac{1}{\left(\frac{(m + 1)^{\alpha} - m^{\alpha}}{m^{\alpha}(m + 1)^{\alpha}}\right)^{1/\alpha}} - m = \frac{m(m + 1)}{(m + 1)^{\alpha} - m^{\alpha})^{1/\alpha}} - m
\]
For $m = 1$
\[
M_k < \frac{2}{(2^{\alpha} - 1)^{1/\alpha}} - 1
\]
Denote the above constant by $C(\eta)$
Hence $M_l > t - (N - 1)C(\eta)$
Since D measures non-uniformity of coordinates, for $x = (1, 1, \ldots, 1)$
\[
D(t, x + e_k) > D(t, x). \text{ Thus}
\]
\[
D(t + 1, x) = \sum_{k=1}^{N} V_k(x)D(t, x + e_k) + 2 \sum_{k=1}^{N} V_k(x)M_k(t, x + e_k) + 1
\]
\[
D(t + 1, x) \geq D(t, x) + 2 \sum_{k=1}^{N} V_k(x)M_k(t, x + e_k) + 1
\]
But it has been shown
\[
M_k(t, x + e_k) > t - (N - 1)C(\eta)
\]
Thus $D(t + 1, x) > D(t, x) + 2t - 2NC(\eta)$
Therefore
\[
D(t, x) > 2 \sum_{i=1}^{t-1} (i - (N - 1)C(\eta)) > t^2 - t - 2t(N - 1)C(\eta)
\]
Thus if
\[\frac{t(N)}{N} \to \infty \quad \text{as} \quad N \to \infty, \]
\[\frac{D(t,x)}{t^2} \to 1 \quad \text{as} \quad N \to \infty \]

But \(t^2 \) is the maximum of \(D \). Indeed,
\[D(t,x) = \sum_{y} \|y - x\|^2 \cdot P_t(x,y) \leq \sum_{y} |y - x|_1^2 \cdot P_t(x,y) = t^2, \]

with equality achieved only if exactly one of \((y_k - x_k)\) is non-zero.

Thus in this case exactly one of the coordinates is growing.

Conclusions

We see that the system does indeed exhibit qualitatively different behavior for depending on whether \(\eta \) is greater or less than 1.