Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification.

1. For the first system of equations:
 (a) \(A = \begin{bmatrix} 3 & 0 & -4 \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \); \(x = \begin{bmatrix} s \\ t \\ u \end{bmatrix} \); and \(b = \begin{bmatrix} -1 \\ 0 \\ -3 \end{bmatrix} \).

 (b) After performing the row reductions (which you need to write out), the reduced row echelon form is \(\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & 4 \end{bmatrix} \).

 (c) The set of solutions is \(\{(s, t, u) = (5, -9, 4)\} \).

For the second system of equations:
 (a) \(A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 2 & 0 \\ -1 & -1 & -1 & 1 & 1 \end{bmatrix} \); \(x = \begin{bmatrix} x \\ y \\ z \\ v \\ w \end{bmatrix} \); and \(b = \begin{bmatrix} 7 \\ 11 \\ 13 \end{bmatrix} \).

 (b) After performing the row reductions (which you need to write out), the reduced row echelon form is \(\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & | & -6 \\ 0 & 0 & 1 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & 1 & 1 & | & 10 \end{bmatrix} \).

 (c) The set of solutions is \(\{(-6 - \alpha + \beta, \alpha, 3 - \beta, 10 - \beta, \beta) \mid \alpha, \beta \in \mathbb{R} \} \).

2. Take the determinants by expanding by minors along a row or column:
 (a) Determinant = 0; not invertible (since the determinant is 0).
 (b) Determinant = 1; invertible.
 (c) Determinant = -1; invertible.

3. Only the matrices in (b) and (c) are invertible. Find inverse by row reducing \([A \mid I]\) into reduced row echelon form, namely \([I \mid A^{-1}]\).
 (b) Inverse = \(\begin{bmatrix} 2 & 0 & -1 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \).
(c) Inverse =
\[
\begin{bmatrix}
-51 & 15 & 7 & 12 \\
31 & -9 & -4 & -7 \\
-10 & 3 & 1 & 2 \\
-3 & 1 & 1 & 1
\end{bmatrix}
\]

4. (a) Let
\[
E = \begin{bmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
and
\[
F = \begin{bmatrix}
1 & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

(b) Answers may vary. Can take
\[
E_1 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{bmatrix}
\]
; then
\[
E_2 = \begin{bmatrix}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
; then
\[
E_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -1
\end{bmatrix}
\]

5. Here we first calculate
\[
AB = \begin{bmatrix}
-1 & 0 \\
-1 & 2
\end{bmatrix}
\begin{bmatrix}
-2 & 0 \\
-1 & 1
\end{bmatrix}
= \begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\]

Therefore, \((AB)^2 = \begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}\)^2 = \begin{bmatrix}
4 & 0 \\
0 & 4
\end{bmatrix}\), and similarly \((AB)^3 = \begin{bmatrix}
8 & 0 \\
0 & 8
\end{bmatrix}\). In general,
\[
(AB)^n = \begin{bmatrix}
2^n & 0 \\
0 & 2^n
\end{bmatrix}
\]

6. Suppose \(A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}\), and so \(A^T = \begin{bmatrix}
a & c \\
b & d
\end{bmatrix}\). Thus,
\[
det(A) = det(A^T) = ad - bc.
\]

Now since \(AA^T = I\), we have that \(A^T = A^{-1}\). Since
\[
det(A^{-1}) = \frac{1}{det(A)};
\]
we see that
\[
det(A) = det(A^T) = det(A^{-1}) = \frac{1}{det(A)};
\]
that is \(det(A) = \frac{1}{det(A)}\), which gives \(det(A)^2 = 1\). Thus, \(det(A) = \pm 1\).

7. The lower left entry of \(A\) should be \(-\cos(x)\sin(y)\); it has now been corrected in the problem set. Expand the first row by minors:
\[
det(A) = \cos(y) \begin{vmatrix}
\cos(x) & -\sin(x) \\
\sin(x) & \cos(x)
\end{vmatrix} - \sin(y) \begin{vmatrix}
\sin(x) & \cos(x) \\
\cos(x) & \cos(y)
\end{vmatrix} - 0 + \sin(y) \begin{vmatrix}
\sin(x) & \sin(y) \\
\cos(x) & \cos(y)
\end{vmatrix} - \cos(x) \begin{vmatrix}
\sin(x) & \sin(y) \\
\cos(x) & \cos(y)
\end{vmatrix} \\
= \cos(y)(\cos^2(x)\cos(y) + \sin^2(x)\cos(y)) + \sin(y)(\sin^2(x)\sin(y) + \cos^2(x)\sin(y)) \\
= \cos^3(y)(\cos^2(x) + \sin^2(x)) + \sin^2(y)(\sin^2(x) + \cos^2(x)) \\
= \cos^2(y) \cdot 1 + \sin^2(y) \cdot 1 \\
= 1.
\]
So \(det(A) = 1\), regardless of \(x\) and \(y\).
8. Determine if the following sets of vectors are or are not vector spaces. If they are not, explain why.

(a) \(V = \) solution set of the equations \(x + y - z - w = 0 \) and \(x + y + 2w = 0 \) in \(\mathbb{R}^4 \).

Solution: This is a vector space. Solution sets of homogeneous systems of linear equations are always vector spaces. (They are the nullspaces of the their corresponding coefficient matrices.)

(b) \(W = \{ [x, y] \mid y = x + \frac{1}{2} \} \).

Solution: \(W \) is not a vector space. Notice that \(\left(\frac{1}{2} \right) \in W \) but that \(2 \cdot \left(\frac{1}{2} \right) = \left(\frac{1}{1} \right) \notin W \). So \(W \) is not closed under scalar multiplication.

(c) \(X = \) set of upper triangular \(3 \times 3 \) matrices.

Solution: \(X \) is a vector space. We know that the set of \(3 \times 3 \) matrices forms a vector space. One needs only check that \(X \) is closed under addition and scalar multiplication. (On the exam, you would indeed want to check this for full credit!)

9. (a) Check directly that \(A\mathbf{x} = \mathbf{0} \).

(b) The equations are \(2x_1 - x_2 = 0 \) and \(2x_2 + x_3 = 0 \).

(c) We transform \(A \) into reduce row echelon form to find that

\[
A \leftrightarrow \begin{bmatrix}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

In this case, \(x_1 \) and \(x_2 \) are leading variables, and \(x_3 \) and \(x_4 \) are free variables. So

\[
N(A) = \left\{ \begin{bmatrix}
\alpha \\
\frac{-\alpha}{4} \\
\frac{\alpha}{2} \\
\beta
\end{bmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}.
\]

10. By symmetry, we need only show that if \(A \) is row equivalent to \(B \) then \(B \) is row equivalent to \(A \). Suppose that \(A \) is row equivalent to \(B \). Then there are elementary matrices \(E_1, E_2, \ldots, E_k \), so that

\[(E_k \cdots E_1)A = B.\]

This implies that

\[(E_k \cdots E_1)^{-1}B = A.\]

Now

\[(E_k \cdots E_1)^{-1} = E_1^{-1} \cdots E_k^{-1},\]

and the inverse of an elementary matrix is itself an elementary matrix. Therefore,

\[E_1^{-1} \cdots E_k^{-1}B = A,\]

and so \(B \) is row equivalent to \(A \).
11. By interchanging row 1 of M with row $k+1$, row 2 with row $k+2$, and so on, we see that M is row equivalent to $[A\ 0 \ 0 \ B]$. Since we have made k row swaps, we see that
\[\det(M) = (-1)^k \det \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}. \]

(The following proof is good to know in principle, but in its entirety would be beyond the scope of an exam.) We now proceed by induction on k. If $k = 1$, then A and B are simply scalars (1×1 matrices), and so $\det(M) = (-1)^k AB$ as desired. Suppose that the result is true for all k, $1 \leq k \leq \ell - 1$. Expand the determinant of $[A\ 0 \ 0 \ B]$ along the top row: letting A_{ij} be the ij-minor of A, we see that
\[\det \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = a_{11} \det \begin{bmatrix} A_{11} & 0 \\ 0 & B \end{bmatrix} - a_{12} \det \begin{bmatrix} A_{12} & 0 \\ 0 & B \end{bmatrix} + \cdots + (-1)^{k+1}a_{1k} \det \begin{bmatrix} A_{1k} & 0 \\ 0 & B \end{bmatrix}. \]

Now expand each of the B’s along the bottom row. After the dust settles and you simplify the expressions, you obtain $\det \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \det(A) \det(B)$.

12. Suppose that S is a subspace of \mathbb{R}^1. Suppose that $S \neq \{0\}$. Therefore we can pick $x_0 \in S$ with $x_0 \neq 0$. Since S is a subspace, it is closed under scalar multiplication, so for any $c \in \mathbb{R}$, we have $cx_0 \in S$. Now suppose $y \in \mathbb{R}$. We want to show that $y \in S$. Let $c = \frac{y}{x_0}$. Then
\[cx_0 = \frac{y}{x_0} \cdot x_0 = y \in S. \]

Therefore $\mathbb{R}^1 \subseteq S$, so $S = \mathbb{R}^1$.

\[\text{4} \]