MATH 323.503
Exam 2 Solutions
November 18, 2015

1. Consider the matrix

\[A = \begin{bmatrix} 8 & -6 \\ 9 & -7 \end{bmatrix}. \]

(a) Determine the eigenvalues of \(A \).

(b) For each eigenvalue of \(A \) find the corresponding fundamental eigenvectors.

(c) Find a matrix \(P \) so that \(P^{-1}AP = D \) is a diagonal matrix. What is \(D \)?

Solution: (a) To find the eigenvalues we determine the characteristic polynomial of \(A \):

\[p_A(x) = |A - xI| = \begin{vmatrix} 8 - x & -6 \\ 9 & -7 - x \end{vmatrix} = -(8 - x)(7 + x) + 54 = x^2 - x - 2. \]

This then factors as

\[p_A(x) = x^2 - x - 2 = (x - 2)(x + 1), \]

and so the eigenvalues of \(A \) are \(\lambda = -1, 2 \).

(b) For \(\lambda = -1 \), we take the homogeneous system of equations whose augmented matrix is

\[\begin{bmatrix} 8 - (-1) & -6 \\ 9 & -7 - (-1) \end{bmatrix} = \begin{bmatrix} 9 & -6 \\ 9 & -6 \end{bmatrix}. \]

The reduced row echelon form is then quickly found to be

\[\begin{bmatrix} 1 & \frac{-2}{3} \\ 0 & 0 \end{bmatrix}. \]

Thus \[\begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} \] is an eigenvector with eigenvalue \(\lambda = -1 \). Optionally we clear the denominator to take \(v_1 = \begin{bmatrix} \frac{2}{3} \end{bmatrix} \) for our eigenvector.

For \(\lambda = 2 \), we similarly take

\[\begin{bmatrix} 8 - 2 & -6 \\ 9 & -7 - 2 \end{bmatrix} = \begin{bmatrix} 6 & -6 \\ 9 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}. \]

Thus \(v_2 = \begin{bmatrix} 1 \end{bmatrix} \) is an eigenvector with eigenvalue \(\lambda = 2 \).

(c) We know that if we take \(P \) to be a square matrix whose columns are linearly independent eigenvectors for \(A \), then \(P^{-1}AP \) will be diagonal. So we take

\[P = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}. \]
Furthermore we know that $P^{-1}AP$ will be a diagonal matrix with the eigenvalues of A on the diagonal, in the same order as the eigenvectors of A appear in P. That is,

$$D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$

Note that no computation is required, since we know from the theory that these matrices will work. However, one can easily check that $P^{-1}AP = D$ to verify that we have the right answer.

2. For each statement below, write down whether it is True or False.

(a) If λ is an eigenvalue of a matrix A, then $\lambda + 1$ is an eigenvalue of $A + I$ (where I is the identity matrix).

(b) Let $S = \{v_1, v_2, v_3\}$ be a subset of a 3-dimensional vector space V. If $v_1 \notin \text{Span}(v_2)$ and $v_3 \notin \text{Span}(v_1, v_2)$, then S spans V.

(c) Suppose that S and T are linearly independent subsets of a vector space V. Then $S \cup T$ is a linearly independent set.

(d) Let $T = \{w_1, w_2, w_3, w_4\}$ be a subset of a vector space W. If every vector in W can be expressed as a linear combination of the elements of T, then the dimension of W is 4.

Solution: Credit was given for the correct answers. The explanations were not necessary, but the ones below may answer some of your questions about these problems.

(a) **True**: If λ is an eigenvalue of A, then A has an eigenvector x so that $Ax = \lambda x$. Then we note that $(A + I)x = Ax +Ix = \lambda x + x = (\lambda + 1)x$. Thus $\lambda + 1$ is an eigenvalue of $A + I$.

(b) **True**: The conditions in the problem imply that $S = \{v_1, v_2, v_3\}$ is a linearly independent set. Since dim(V) = 3, any set of 3 elements must be a basis, and thus S must also span V.

(c) **False**: It suffices to exhibit a counterexample. Let $V = \mathbb{R}^2$ and take $S = \{[1, 0], [0, 1]\}$ and take $T = \{[1, 1]\}$. So $S \cup T = \{[1, 0], [0, 1], [1, 1]\}$, which consists of 3 vectors in \mathbb{R}^2, and so must be linearly dependent since dim(\mathbb{R}^2) = 2. (Moreover, $[1, 0] + [0, 1] + (-1)[1, 1] = [0, 0]$ provides the linear dependency.)

(d) **False**: The dimension of W will be 4 only if T is also linearly independent in addition to spanning W. However, it may not be, so we cannot conclude that dim(W) = 4.

3. Consider the subset $S = \{[1, 1, 0], [21, 26, 0], [13, -7, 0], [e, \pi, 0]\} \subseteq \mathbb{R}^3$. Answer the following questions without doing any lengthy calculations or matrix row reductions.

(a) Does S span \mathbb{R}^3? Why or why not?

(b) Is S linearly independent? Why or why not?
Solution: (a) \[\text{No}. \] Span(S) consists of all linear combinations of the vectors in S, but the last coordinate of any linear combination of the elements of S will necessarily be 0. Thus not all vectors in \(\mathbb{R}^3 \) are in the span of S.

(b) \[\text{No}. \] We know that \(\text{dim}(\mathbb{R}^3) = 3 \), and so any set of 4 or more distinct vectors in \(\mathbb{R}^3 \) must be linearly dependent.

4. Consider the matrix
\[
B = \begin{bmatrix}
1 & -3 & 0 & 9 \\
0 & 0 & 1 & -2 \\
0 & 0 & 2 & -4
\end{bmatrix}.
\]

(a) Let \(R \) be the row space of \(B \). Find a basis of \(R \). Justify your answer.

(b) Let \(V = \{ \mathbf{x} \in \mathbb{R}^4 \mid B\mathbf{x} = \mathbf{0} \} \). Find a basis of \(V \). Justify your answer.

Solution: We first see that the reduced row echelon form of \(B \) is the matrix
\[
R = \begin{bmatrix}
1 & -3 & 0 & 9 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

(a) We know that the non-zero rows of \(R \) will be a basis of the row space of \(B \), so \(\{ [1, -3, 0, 9], [0, 0, 1, -2] \} \) is a basis of the row space.

(b) From \(R \) we see that \(V \) consists of vectors \(\begin{bmatrix} x_1 \\
 x_2 \\
 x_3 \\
 x_4 \end{bmatrix} \) satisfying
\[
x_1 - 3x_2 + 9x_4 = 0 \\
x_3 - 2x_4 = 0.
\]

The independent variables are \(x_2 \) and \(x_4 \), and so we see that
\[
V = \left\{ \begin{bmatrix} 3a - 9b \\
 a \\
 0 \\
 b \end{bmatrix} \mid a, b \in \mathbb{R} \right\} = \left\{ a \begin{bmatrix} 3 \\
 1 \\
 0 \\
 0 \end{bmatrix} + b \begin{bmatrix} -9 \\
 0 \\
 2 \\
 1 \end{bmatrix} \mid a, b \in \mathbb{R} \right\}.
\]

The resulting fundamental solutions of \(A\mathbf{x} = \mathbf{0} \) form a basis of \(V \), and so
\[
\left\{ \begin{bmatrix} 3 \\
 1 \\
 0 \\
 0 \end{bmatrix}, \begin{bmatrix} -9 \\
 0 \\
 2 \\
 1 \end{bmatrix} \right\}
\]
is a basis.
5. Let $B = (u_1, u_2) = ([5], [1])$ and $C = (v_1, v_2) = ([2], [1])$ be ordered bases of \mathbb{R}^2. We can take it as given that both B and C are bases for \mathbb{R}^2. Let $S = (e_1, e_2)$ be the standard basis of \mathbb{R}^2.

(a) Find the transition matrix P from the basis B to the standard basis S. That is, find a matrix P so that for all $x \in \mathbb{R}^2$, we have $P[x]_B = [x]_C$.

(b) Find the transition matrix Q from the standard basis S to the basis C.

(c) Use your findings in (a) and (b) to find the transition matrix from the basis B to the basis C.

(d) Let $x = 2u_1 - 3u_2$. What is $[x]_C$?

Solution:

(a) We know that P is formed by lining up the vectors from B:

$$P = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix}.$$

(b) The problem here for C is similar to the one in (a), but in reverse order. Thus, we also need to take an inverse,

$$Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}.$$

(c) The matrix P transitions from B-coordinates to S-coordinates, and Q transitions from S-coordinates to C-coordinates, so QP will transition from B-coordinates to C-coordinates:

$$QP = \begin{bmatrix} 5 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ -5 & 1 \end{bmatrix}.$$

(d) Since $x = 2u_1 - 3u_2$, we see that with respect to B we have coordinates

$$[x]_B = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

Changing to C-coordinates (using (c)),

$$[x]_C = QP[x]_B = \begin{bmatrix} 5 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 10 \\ -13 \end{bmatrix}.$$

It is not necessary for the solution, but we can check that we are correct by observing that $x = 2[5] - 3[1] = [7]$ and that $10v_1 - 13v_2 = 10[5] - 13[1] = [7]$.

6. Let \(W_1 \) and \(W_2 \) be subspaces of \(\mathbb{R}^6 \), with \(\dim(W_1) = 2 \) and \(\dim(W_2) = 4 \).

(a) Prove that \(W_1 \cap W_2 \) is a subspace of \(\mathbb{R}^6 \).

(b) Let \(B_1 \) and \(B_2 \) be bases for \(W_1 \) and \(W_2 \) respectively. Suppose that \(\text{Span}(B_1 \cup B_2) = \mathbb{R}^6 \). Prove that \(W_1 \cap W_2 = \{0\} \).

Solution:

(a) We need to prove that \(W_1 \cap W_2 \) is nonempty, closed under addition, and closed under scalar multiplication. Since \(W_1 \) and \(W_2 \) are both subspaces of \(\mathbb{R}^6 \), each must contain the zero vector \(0 \). Thus \(0 \in W_1 \cap W_2 \), and so \(W_1 \cap W_2 \) is nonempty.

To see that \(W_1 \cap W_2 \) is closed under addition, we let \(x, y \in W_1 \cap W_2 \) be arbitrary. We note that \(x + y \in W_1 \), since \(W_1 \) is a subspace, and likewise \(x + y \in W_2 \), since \(W_2 \) is a subspace. Therefore, \(x + y \in W_1 \cap W_2 \), and so \(W_1 \cap W_2 \) is closed under addition.

To see that \(W_1 \cap W_2 \) is closed under scalar multiplication, we let \(x \in W_1 \cap W_2 \) and \(c \in \mathbb{R} \) be arbitrary. Now \(cx \in W_1 \), since \(W_1 \) is a subspace, and likewise \(cx \in W_2 \), since \(W_2 \) is a subspace. Therefore \(cx \in W_1 \cap W_2 \), and so \(W_1 \cap W_2 \) is closed under scalar multiplication.

(b) We first observe that \(|B_1| = 2 \), since \(B_1 \) is a basis of \(W_1 \) and \(\dim(W_1) = 2 \), and that \(|B_2| = 4 \), since \(B_2 \) is a basis of \(W_2 \) and \(\dim(W_2) = 4 \). Thus \(|B_1 \cup B_2| \) is at most \(6 \). However, we are given that \(\text{Span}(B_1 \cup B_2) = \mathbb{R}^6 \), and since the size of a spanning set must be no smaller than the dimension of the vector space it spans, it must be that

\[
|B_1 \cup B_2| \geq 6.
\]

Thus, \(|B_1 \cup B_2| = 6 \) and \(B_1 \cup B_2 \) spans \(\mathbb{R}^6 \), which has dimension 6. Therefore, \(B_1 \cup B_2 \) is a basis of \(\mathbb{R}^6 \).

Now suppose that \(x \in W_1 \cap W_2 \). We want to show that \(x = 0 \). Suppose that \(B_1 = \{u_1, u_2\} \) and \(B_2 = \{v_1, v_2, v_3, v_4\} \). Since \(x \in W_1 \) and \(W_1 = \text{Span}(B_1) \), we see that

\[
x = a_1 u_1 + a_2 u_2,
\]

for some \(a_1, a_2 \in \mathbb{R} \). Likewise, since \(x \in W_2 \), we have

\[
x = b_1 v_1 + b_2 v_2 + b_3 v_3 + b_4 v_4,
\]

for some \(b_1, b_2, b_3, b_4 \in \mathbb{R} \). Subtracting we find

\[
a_1 u_1 + a_2 u_2 - b_1 v_1 - b_2 v_2 - b_3 v_3 - b_4 v_4 = 0,
\]

but since \(B_1 \cup B_2 = \{u_1, u_2, v_1, v_2, v_3, v_4\} \) is a basis of \(\mathbb{R}^6 \), it is a linearly independent set. Therefore, it must be that \(a_1 = a_2 = b_1 = b_2 = b_3 = b_4 = 0 \). In particular \(x = 0 \).