In the problems that are to be turned in for a grade (the ‘*’ problems), I give a hint. For the other problems I explain how to solve the problem, though a proper write-up will need more details and explanation.

Section 14, #10. Since $|\mathbb{Z}_{60}| = 60$ and $|\langle 12 \rangle| = 5$, it follows from Lagrange’s Theorem that $\mathbb{Z}_{60}/\langle 12 \rangle$ has $60/5 = 12$ elements. It is not hard to check that $26 + \langle 12 \rangle$ has order 6, since $6 \cdot 26$ is divisible by 12.

16. Hint: Once you wind through all of the notation, this isn’t too bad. The group $i_{\infty}[H]$ will be a subgroup of order 2 in S_3.

23. (f), (h), and (j) are False. Rest are True.

24. Hint: Normality is not so bad. To describe the quotient S_n/A_n, first determine $|S_n/A_n|$. What is the only group of that order up to isomorphism?

28. This problem, like #23 requires finding all the subgroups of \mathbb{Z}_{20}. We did this in class on Monday!

27. The thing here is to get the right equivalence relation. We let $S =$ set of all subgroups of G. Then for H and $K \in S$, we say “H is conjugate to K” if and only if there exists a $g \in G$ so that $gHg^{-1} = K$. (That is, we need just 1 such g for them to be conjugate.) Reflexivity: Since $eHe^{-1} = H$, we see that H is conjugate to H. Symmetry: If H is conjugate to K, then we can pick a $g \in G$ so that $gHg^{-1} = K$. Then we check that $g^{-1}Kg = H$. Since $g^{-1}Kg = g^{-1}K(g^{-1})^{-1}$, we see that K is conjugate to H. Transitivity is similar.

29. Hint: You just slog it out. Note that any two conjugate subgroups are isomorphic and so must have the same order.

38. Hint: Let $H = \{g \in G \mid \forall x \in G, \ i_g(x) = x\}$. The problem is asking you to show that H is a normal subgroup of G.

Section 15, #13. Hint: Check the answer in the back of the book....