1. Alice and Bob are using RSA to communicate.

(a) Alice’s public encryption key is \((n,e) = (133,5)\). Bob wants to encrypt the plaintext message ‘8’ to send to Alice. What is the ciphertext that he sends?

(b) What is Alice’s decryption exponent?

Solution:

(a) Bob calculates \(c \equiv 8^5 \equiv 50 \pmod{133}\), and so \(c = 50\).

(b) We factor 133 = 7 \cdot 19, and so \(\phi(133) = 6 \cdot 18 = 108\). We then calculate \(\frac{1}{5} \pmod{108}\). Since 3 \cdot 108 = 324, we see that 5 \cdot 65 = 325 \equiv 1 \pmod{108}\). So \(\frac{1}{5} \equiv 65 \pmod{108}\).

2. Bob’s ElGamal public key is \((p,\alpha,\beta) = (31,3,19)\), and his private key is \(a = 4\).

(a) Alice wants to encrypt the message ‘9’ and send it do Bob. She first picks \(k = 5\). What does she send to Bob?

(b) In a separate communication, Alice has sent Bob the encrypted ciphertext \((r,t) = (25,28)\). What is the decrypted message?

Solution:

(a) Alice calculates two quantities: \(r \equiv \alpha^k \pmod{p}\), and so \(r \equiv 3^5 \equiv 26 \pmod{31}\); and \(t \equiv \beta^k m \pmod{p}\), and so \(t \equiv 19^5 \cdot 9 \equiv 14 \pmod{31}\). Therefore \((r,t) = (26,14)\).

(b) To decrypt Bob calculates \(m \equiv t \cdot r^{-a} \pmod{p}\), thus \(m \equiv 28 \cdot 25^{-4} \equiv 16 \pmod{31}\).

3. The following congruences hold:

\[
\begin{align*}
1334^{3826} & \equiv 1 \pmod{3827} & 2493^{3826} & \equiv 1 \pmod{3827} & (1) \\
3826^{3826} & \equiv 1 \pmod{3827} & 2495^{3826} & \equiv 1592 \pmod{3827} & (2) \\
147^{885} & \equiv 6352 \pmod{7081} & 147^{1770} & \equiv 366 \pmod{7081} & (3) \\
147^{3540} & \equiv 6498 \pmod{7081} & 147^{7080} & \equiv 1 \pmod{7081} & (4)
\end{align*}
\]

Answer the following primality test questions. Be sure to mention the primality test you are using and describe how it applies.

(a) What do lines (1)–(2) tell you about the primality of 3827? Explain.

(b) What do lines (3)–(4) tell you about the primality of 7081? Explain.

Solution:

(a) We apply the Fermat’s Little Theorem primality test. The first three pieces of data are not useful, but the last one shows that \(2495^{3827-1} \equiv 1592 \not\equiv 1 \pmod{3827}\). Therefore, 3827 must be composite.

1
(b) Here we apply the Miller-Rabin primality test. In this case $7080 = 8 \cdot 885$. From the data provided, we see that

$$147^{885} \equiv 6352 \not\equiv \pm 1 \pmod{7081},$$
$$147^{2 \cdot 885} \equiv 366 \not\equiv -1 \pmod{7081},$$
$$147^{4 \cdot 885} \equiv 6498 \not\equiv -1 \pmod{7081}.$$

Therefore, the Miller-Rabin test implies that 7081 is composite. (Note that the final piece of data, that $147^{7080} \equiv 1 \pmod{7081}$, is not used, but it also indicates that the Fermat’s Little Theorem primality test will not apply here.)

4. The number 2 is a primitive root modulo 13. Use the Pohlig-Hellman algorithm to find $L_2(7)$.

Solution: Since $13 - 1 = 12 = 2^2 \cdot 3$, we have to apply the algorithm for the primes 2 and 3.

For $q = 2$, we first find x_0 such that $2^6x_0 \equiv 7^6 \equiv 12 \pmod{13}$. We see that $x_0 = 1$. We then calculate that $\beta_1 \equiv \alpha^{-x_0}\beta \equiv 2^{-1} \cdot 7 \equiv 10 \pmod{13}$. We look for x_1 so that $2^{6x_1} \equiv 10^3 \equiv 12 \pmod{13}$, and so $x_1 = 1$. From this we see that $y_1 = 1 + 1 \cdot 2 = 3$.

For $q = 3$, we look for x_0 such that $2^{4x_0} \equiv 7^4 \equiv 9 \pmod{13}$. It follows that $x_1 = 2$, and so $y_2 = 2$.

We thus use the Chinese remainder theorem to find x so that $x \equiv 3 \pmod{4}$ and $x \equiv 2 \pmod{3}$. It follows that $x \equiv 11 \pmod{12}$, and therefore $L_2(7) = 11$.

5. Suppose that Eric and Todd are communicating using a modified version of RSA. Eric’s public key is (n_1, e_1), and his private key is d_1, both keys set up exactly as in normal RSA. Similarly Todd’s public key is (n_2, e_2), and his private key is d_2. To send the plaintext message m to Todd, Eric first calculates

$$c_1 \equiv m^{d_1} \pmod{n_1},$$

and then he calculates

$$c_2 \equiv c_1^{e_2} \pmod{n_2}.$$

He then sends c_2 to Todd.

(a) Todd receives the ciphertext c_2. How does he decrypt the message? Explain.

(b) How can Todd know for certain that Eric sent him the message, rather than someone else posing as Eric?

Solution: (a) To decrypt the message, Todd must perform two congruences. He calculates $c_2^{d_2} \equiv c_1 \pmod{n_2}$ and then he calculates $c_1^{e_1} \equiv m \pmod{n_1}$.

(b) Since Eric used his decryption exponent d_1 as part of the encryption process (and he is presumably the only person who knows d_1), when Todd calculated $c_1^{e_1} \pmod{n_1}$, he would get a recognizable message only if d_1 was used to encrypt.
6. Let \(n = 10057 \). We know that 10057 is the product of two distinct primes. Suppose in carrying out the quadratic sieve that you have found that

\[
\begin{align*}
81^2 - n &= -3496 = -2^3 \cdot 19 \cdot 23, \\
83^2 - n &= -3168 = -2^5 \cdot 3^2 \cdot 11, \\
99^2 - n &= -256 = -2^8, \\
100^2 - n &= -57 = -3 \cdot 19, \\
103^2 - n &= 552 = 2^3 \cdot 3 \cdot 23, \\
104^2 - n &= 759 = 3 \cdot 11 \cdot 23.
\end{align*}
\]

(a) Use this information to find positive integers \(x \) and \(y \) such that \(x^2 \equiv y^2 \pmod{10057} \) but \(x \not\equiv \pm y \pmod{10057} \).

(b) Use the information in part (a) to factor 10057.

Solution: (a) By inspection, we can find at least two correct solutions. One was

\[
x = 83 \cdot 99 \cdot 103 \cdot 104 = 88020504,
\]

\[
y = \sqrt{3168 \cdot 256 \cdot 552 \cdot 759} = 582912.
\]

The other was

\[
x = 81 \cdot 83 \cdot 99 \cdot 100 \cdot 104,
\]

\[
y = \sqrt{3496 \cdot 3168 \cdot 256 \cdot 57 \cdot 552 \cdot 759}.
\]

In both cases \(x^2 \equiv y^2 \pmod{10057} \) and \(x \not\equiv \pm y \pmod{10057} \).

On the other hand, it was possible to consider

\[
x = 81 \cdot 100 \cdot 103,
\]

\[
y = \sqrt{3496 \cdot 57 \cdot 552}.
\]

In this case \(x^2 \equiv y^2 \pmod{10057} \), but \(x \equiv -y \pmod{10057} \).

(b) We calculate \(\gcd(x - y, 10057) \) to find a non-trivial factor. In the first case in (a), we can simplify a little by finding that

\[
x = 88020504 \equiv 1640 \pmod{10057},
\]

\[
y = 582912 \equiv 9663 \pmod{10057}.
\]

We then calculate that

\[
\gcd(x - y, 10057) = \gcd(1640 - 9663, 10057) = \gcd(8023, 10057) = 113.
\]

We then find that \(10057 = 113 \cdot 89 \). (The solution using the second set of values in (a) is similar.)