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Convergence rates for uniform B-spline density estimators on
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Convergence rates for B-spline nonparametric density estimators on bounded and semi-infinite
domains are discussed. We show how B-spline estimators can be adjusted to account for edge effects
and then determine the mean integrated squared error for the adjusted estimator and its derivatives.
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1. Introduction

Simulations that generate very large data sets in one and many dimensions are increasingly
common. Nonparametric density estimates based on these data sets are often required and
estimators that can be generated and manipulated efficiently are needed. In computer graphics,
for example, nonparametric density estimates over surfaces can be used to represent lighting
functions [1]. These simulations may generate as many as 50–100,000 data points for each
light in the scene. Another application area is that of statistical genetics where simulations are
needed for hypothesis tests when the exact distribution of the test statistics is not known [2].
For example, the likelihood ratio test statistics is, under reasonable conditions, asymptotically
chi-squared. But in the case that the parameter for the null hypothesis is on the boundary of
the parameter domain, the distribution of the test statistics may be unknown.

The fact that spline functions can be efficiently evaluated on a digital computer has led to the
use of splines for many statistical applications [3–9] and for density estimation [10]. We note
that the paper by Lii [7] uses spline interpolation of the cumulative distribution function and
shows that the bias is O(h3). But this result depends on knowing certain endpoint information.
If this information is incorrect, then the estimate would have much larger bias at the endpoints.

In addition to these papers, a B-spline nonparametric density estimator with uniformly
spaced knots convenient for large data sets was discussed by Gehringer and Redner [11]. These
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ideas were later extended to density function estimation on metric spaces using partitions of
unity in Redner and Gehringer [11]. The asymptotic rates of convergence for these schemes
in one and multiple dimensions have also been investigated by Redner [see refs. 12, 13]. The
results in these papers establish the fact that the estimators converge rapidly, and furthermore
give approximately the same rate of convergence as kernel density estimators in one and many
dimensions. Yet the final B-spline density estimate depends only on a relatively small number
of statistics. Additional details of the computational advantage of B-spline estimators can be
found in ref. [12].

As is the case with kernel density estimates, the affects of boundaries must be accounted
for. Note however, that by definition, the B-spline density estimates naturally have support
within the interval specified and so, for example, the reflection techniques as presented by
Schuster [14] are not applicable. But other ideas for correcting for edge effects for kernel
density estimators, which include a transformation approach by Marron and Ruppert [15],
the pseudodata method of Cowling and Hall [16] and a Hilbert space projection method
of Djojosugito and Speckman [17], could be adapted to the B-spline boundary problem.
Additional ideas include the beta kernel estimator presented by Chen [18] and the boundary
kernel method of Müller [19] could also be used. The reader is referred to the paper Cheng
et al. [20] for several additional references.

In this paper, however, we do not pursue any of these methods since it seem unlikely that any
of these methods would appropriately correct the boundary effects on the derivatives of the
density estimate. Instead, we introduce a boundary correction method specifically designed
for the B-spline density estimate on finite and semi-infinite intervals. We also establish the
asymptotic rate of convergence of the estimator and all of its continuous derivatives.

In section 2, we introduce the corrected estimator and show how the correction coefficients
can be uniquely determined. Our main results on the asymptotic integrated squared bias and
variance for semi-infinite and bounded intervals are presented in sections 3 and 4. The proof
of the results for the semi-infinite case of section 3 are given in sections 5, 6 and 7 and is
followed by a brief discussion in section 8.

2. The B-spline density estimator with boundary correction

Let Nm(x) be the mth order normalized uniform B-spline associated with the evenly spaced
knots 0, 1, 2, . . . , m, i.e., for each real number x,

Nm(x) =
m∑

i=0

(−1)i
(

m

i

)
(x − i)m−1

+
(m − 1)! ,

where

(z)+ =
{

z, if z < 0;
0, otherwise.

We note that
∫ ∞
−∞ Nm(x) dx = 1, Nm(x) ≥ 0 and that Nm(x) is m − 2 times continuously

differentiable [21, 22]. In this application, we will need scaled and shifted copies of the basis
functions. So let h be a positive real number, xi = (i − m)h for each integer i and define

Bm
i (x) = Nm

(
x − xi

h

)
= Nm

(x

h
+ m − i

)
.

Then for m ≥ 1, 0 ≤ Bm
i (x) ≤ 1 and

∑∞
i=−∞ Bm

i (x) = 1 for each x. When m ≥ 2, the basis
functions are continuous and hence form a partition of unity.
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Therefore, let X1, X2, . . . , XN and X be independent identically distributed random vari-
ables from a continuous probability density function f on a closed interval I . Define an
estimate f̂N of f as

f̂N (x) =
∑

i

αi

bi

Bm
i (x),

where bi and αi are defined by

bi =
∫

I

Bm
i (x) dx and αi = 1

N

N∑
k=1

Bm
i (Xk)

for each integer i and where
∑

i is the sum over all indices for which bi �= 0. Note that
f̂N (x) is a probability density function and under the natural assumptions in ref. [1], this
estimator converges in mean integrated squared error to the true underlying density function.
For I = (−∞, ∞), the asymptotic mean integrated square error (AMISE) was determined in
ref. [12] for f̂N and all of its nontrivial derivatives. But these results do not apply to the case
that I is a bounded or semi-infinite interval and in fact the boundary has a deleterious effect
on the size of the AMISE. The goal of this paper is to introduce a modified estimator f̂C(x)

and to determine the AMISE for bounded and semi-infinite intervals.
To reach this goal, correction terms will be introduced, so let x0 be a real number, let k be

a whole number and define

ai,k(x0) ≡
∫ ∞

−∞
(x − x0)

k

k!
Bm

i (x)

h
dx

and

αi,k(x0) ≡
∫ ∞

0

(x − x0)
k

k! Bm
i (x) dx.

We will also use ai,k = ai,k(0) and αi,k = αi,k(0). Note also that αi,k(x0)/bi = ai,k(x0) for
i ≥ m.

The proof of the following theorem can be found in Appendix A.

THEOREM 1 If m ≥ 2, then the system of equations

m+i−1∑
j=i

ci,j+1−iαj,k = ai,kbi − αi,k for i = 1, . . . , m − 1 and k = 0, . . . , m − 1 (1)

has a unique solution.

Given the m(m − 1) unknown constants {{cij }m−1
i=1 }mj=1 defined by solving the system of

equations in Theorem 1, the new B-spline density estimator can now be defined. Let I = [0, ∞)
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and define

Bm
i (x) = Nm

(x

h
+ m − i

)
and bi =

∫ ∞

0
Bm

i (x) dx

for i ≥ 1. We define

f̂ ∗
N(x) =

m−1∑
i=1

α∗
Li

Bm
i (x)

bi

+
∞∑
i=1

αi

Bm
i (x)

bi

(2)

and

f̂C(x) = f̂ ∗
N(x) − ᾱf̂N (x), (3)

where

α∗
Li

=
m+i−1∑

j=i

ci,j+1−iαj

for i = 1, . . . , m − 1 and

ᾱ =
m−1∑
i=1

α∗
Li

.

The first term in the expression of f̂ ∗
N(x) in equation 2 is added to remove the effects of the

left boundary and the last term of equation (3) is added so that f̂C(x) integrates to 1.
We have used Mathematica [23] to determine the correction terms defined by equation (1).

When m = 2, the correction term
∑m−1

i=1 α∗
Li

Bm
i (x)/bi is

α∗
L1

B2
1 (x)

b1
,

where

α∗
L1

1

2
α1 − 1

4
α2.

In the case that m = 3, the correction term is

2∑
i=1

α∗
Li

B3
i (x)

bi

,

where

α∗
L1

= 89

18
α1 − 23

18
α2 + 13

54
α3

and

α∗
L2

= 13

37
α2 − 5

12
α3 + 55

444
α4.

The results for splines of order 4, 5 and 6 are included in Appendix B.
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3. Assumptions and main results

Throughout this paper, unless otherwise noted, we make the following assumptions

ASSUMPTION 1 Both m and n are whole numbers with m ≥ n + 2.

ASSUMPTION 2 Given an interval I , f is n + 2 times continuously differentiable on I , f (n+2)

is absolutely continuous and f (k) ∈ L1(I ) and f (k) ∈ L2(I ) for 0 ≤ k ≤ n + 3.

Except in section 4, we will assume that I = [0, ∞). Then the following two theorems
represent the main results of this paper. Technical results needed to prove these facts are
presented in section 5 and the proofs of Theorems 2 and 3 are given in sections 6 and 7,
respectively.

THEOREM 2 If m ≥ n + 3, the integrated squared bias is

∫ ∞

0
(E(f̂

(n)
C (x)) − f (n)(x))2dx

= h4
( m

12

)2
∫ ∞

0
(f (n+2)(x) + f ′(0)f (n)(x))2dx + O(h5) + O

(
h2

Nhn

)

and if m = n + 2, the integrated squared bias is

∫ ∞

0
(E(f̂

(n)
C (x)) − f (n)(x))2dx = h4

720

∫ ∞

0
(f (n+2)(x))2dx

+ h4
( m

12

)2
∫ ∞

0
(f (n+2)(x) + f ′(0)f (n)(x))2dx + O(h5) + O

(
h2

Nhn

)
.

We note that in the unbounded case [see ref. 12], the integrated variance of the estimator
f̂

(n)
N was shown to be

Dm,n

Nh1+2n
+ O

(
1

Nh2n

)
.

We have similar results for the estimator f̂
(n)
C .

THEOREM 3 The integrated variance of the estimator f̂
(n)
C is

Dm,n

Nh1+2n
+ O

( √
h

Nh1+2n

)
,

where Dm,n is independent of N and h and examples of values of Dm,n can be found in table B4
in Appendix B.

As an immediate corollary we have the following result.

COROLLARY 1 If h → 0 and Nh1+2n → ∞ as N → ∞, then f̂
(n)
C converges to f (n) in mean

integrated squared error.
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4. Auxiliary results

In this section only we define I = [a, b] and assume that Assumption 2 holds for I = [a, b].
Then the ideas and results of section 2 can be directly extended. In this case, we need to
use values of h that allow knots to fall at both a and b. So let K1 be a positive integer and
define h = (b − a)/K1, Bm

i (x) = N(x/h + m − ah − i) and K = K1 + m − 1. Then the
basis functions {Bm

i }Ki=1 have support on [a, b]. So define

f̂ ∗
N(x) =

m−1∑
i=1

α∗
Li

Bm
i (x)

bi

+
K∑

i=1

αi

Bm
i (x)

bi

+
K∑

i=K−m+2

α∗
Ri

Bm
i (x)

bi

and

f̂C(x) = f̂ ∗
N(x) − ᾱf̂N (x),

where

α∗
Li

=
m+i−1∑

j=i

ci,j+1−iαj ,

α∗
Ri

=
i∑

j=i−m+1

cK−i+1,i−j+1αj ,

and

ᾱ =
m−1∑
i=1

α∗
Li

+
K∑

i=K−m+2

α∗
Ri

.

THEOREM 4 If m ≥ n + 3,∫ b

a

(
E
(
f̂

(n)
C (x)

)
− f (n)(x)

)2
dx

= h4
( m

12

)2
∫ b

a

(
f (n+2)(x) + (f ′(a) − f ′(b))f (n)(x)

)2
dx + O(h5) + O

(
h2

Nhn

)

and if m = n + 2,∫ b

a

(
E
(
f̂

(n)
C (x)

)
− f (n)(x)

)2
dx

= h4

720

∫ b

a

(
f n+2(x)

)2
dx + h4

( m

12

)2

×
∫ b

a

(
f (n+2)(x) + (f ′(a) − f ′(b))f (n)(x)

)2
dx + O(h5) + O

(
h2

Nhn

)
.

THEOREM 5 The integrated variance of the estimator f̂
(n)
C is

Dm,n

Nh1+2n
+ O

( √
h

Nh1+2n

)
,

where Dm,n is independent of N and h and examples of values can be found in table B4 in
Appendix B.
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Convergence of the estimator and its derivatives is assured under the conditions of
Corollary 1.

5. Preliminary theorems and lemmas

We now return to our analysis of the case that I = [0, ∞). For each of the next two theorems,
we define the sequence of points ti = hi for i = 0, 1, 2, . . . and let ξi and ηi denote arbitrary
points in the ith interval, i.e., ti−1 ≤ ξi ≤ ti and ti−1 ≤ ηi ≤ ti .

THEOREM 6 [12] Suppose that the function φ is absolutely continuous on [0, ∞) and that φ

and φ′ are in L1[0, ∞). Then the following sum exists and may be written as

∞∑
i=1

φ(ξi)h =
∫ ∞

0
φ(x) dx + O(h‖φ′‖1).

THEOREM 7 [12] Let f and g satisfy f ′, g′, fg, and (fg)′ ∈ L1[0, ∞). Then

∞∑
i=1

f (ξi)g(ηi)h =
∫ ∞

0
f (x)g(x) dx + O(h‖(fg)′‖1) + O(h‖f ′‖1(inf |g| + ‖g′‖1)).

Please note that if the points ξi and ηi lie in overlapping intervals of the form [ti−k, ti] for
a fixed number k, then the conclusions of Theorems 6 and 7 still hold.

THEOREM 8 [12] Let {ai}∞i=−∞ be any bi-infinite sequence of real numbers. Then for 0 ≤ n ≤
m, dn/dxn

∑∞
i=1 aiB

m
i (x) = 1/hn

∑∞
i=1(�

nai)B
m−n
i (x), where d/dx denotes the right-hand

derivative and � denotes the forward difference operator.

For n ≥ 0, we now define gn(x, x0) = ∑∞
i=−∞ ai,n(x0)B

m
i (x), where Bm

i (x) = Nm(x/h +
m − i). Then the following theorem is a straightforward generalization of the work by Redner
in ref. [12] where the result is proven for x0 = 0 and the basis functions are shifted by 1/2.
Note also that all B-spline basis functions are differentiated using a right-handed derivative
since our B-splines are defined to be right continuous.

THEOREM 9 Let x0 be a real number. For m ≥ n + 1, g(n)
n (x, x0) = 1.

If m ≥ n + 2, g
(n)
n+1(x, x0) = x − x0.

If m = n + 2, g
(n)
n+2(x, h/2) = h2 2m + 1

24
and if m ≥ n + 3,

g
(n)
n+2(x, x0) = (x − x0)

2

2
+ h2m

12
.

We now develop several facts concerning properties of the estimate of the probability density
functionf and some of its components. Therefore, we observe that iff isM times continuously
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differentiable on [0, ∞) and xl is any real number, then by Taylor’s theorem

E(αi) =
∫ ∞

0
f (x)Bm

i (x) dx

=
∫ ∞

0

(
M−1∑
k=0

f (k)(xl)
(x − xl)

k

k! + f (M)(ξx)
(x − xl)

M

M!

)
Bm

i (x) dx

=
M−1∑
k=0

f (k)(xl)αi,k(xl) +
∫ ∞

0
f (M)(ξx)

(x − xl)
M

M! Bm
i (x) dx,

where ξx is between x and xl for each x. If M is even, then by the integral mean value theorem

E(αi) =
M−1∑
k=0

f (k)(xl)αi,k(xl) + f (M)(ξi)αi,M(xl), (4)

where ξi lies in the support of Bm
i (x).

When k is even, define

pk
i =




m+i−1∑
j=i

ci,j+1−if
(k)(ξj )αj,k(xl)/bi + f (k)(ξi)αi,k(xl)/bi if 1 ≤ i ≤ m − 1;

f (k)(ξi)αi,k(xl) otherwise.

(5)

The case that k is odd can be handled in a similar fashion and for all k ≥ 0, pk
i = O(hk). The

following lemma can now be established in a straightforward manner using equations (4) and
(5) and their extensions for the odd case and by considering the cases that M is even or odd.

LEMMA 1 Let f be M times continuously differentiable on [0, ∞). Then for xl ≥ 0,

E
(
f̂ ∗

N(x)
)

=
M−1∑
k=0

f (k)(xl)gk(x, xl) +
∞∑
i=1

pM
i Bm

i (x).

LEMMA 2 For xl ≥ 0,

E
(
f̂

∗(n)
N (x)

)
= f (n)(xl) + f (n+1)(xl)(x − xl) +

∞∑
i=1

pn+2
i

dn

dxn
Bm

i (x).

Proof Since g(n)
n (x, xl) = 1 and g

(n)
n+1(x, xl) = x − xl , then the result follows by Lemma 1

with M = n + 2. �

LEMMA 3 ∫ ∞

0

(
E(f̂

(n)
N (x))

)2
dx =

∫ ∞

0

(
f (n)(x)

)2
dx + O(h).

Proof Using the fact that f̂ ∗
N(x) = f̂N (x) on x ≥ (m − 1)h, the result follows in a

straightforward way from ref. [12] �

In addition to this theorem, we will need two technical results that will be used to determine
the AMISE.
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LEMMA 4 Let {{ci,j }m−1
i=1 }mj=1 satisfy equation (1). Then for i = 1, . . . , m − 1,∑m+i−1

j=i ci,j+1−ibj = 0.

Proof

m+i−1∑
j=i

ci,j+1−ibj =
m+i−1∑

j=i

ci,j+1−iαj,0 = ai,0bi − αi,0 = 1bi − bi = 0.

�

LEMMA 5 Let x0 be any real number and let {{ci,j }m−1
i=1 }mj=1 satisfy equation (1). Then

m+i−1∑
j=i

ci,j+1−iαj,k(x0)

bi

+ αi,k(x0)

bi

= ai,k(x0)

for i = 1, . . . , m − 1 and k = 0, . . . , m − 1. (6)

Proof We first observe by an application of the binomial expansion theorem that

αj,k(x0) =
k∑

p=0

(−x0)
k−p

(k − p)! αj,p.

Then, since {{cij }m−1
i=1 }mj=1 satisfies equation (1), it follows for i = 1, . . . , m − 1 and k =

0, . . . , m − 1, that

m+i−1∑
j=i

ci,j+1−iαj,k(x0)

bi

+ αi,k(x0)

bi

=
k∑

p=0

(−x0)
k−p

(k − p)!


m+i−1∑

j=i

ci,j+1−iαj,p

bi

+ αi,p

bi




=
k∑

p=0

(−x0)
k−p

(k − p)!
∫ ∞

−∞
xp

p!
Bm

i (x)

h
dx = ai,k(x0).

�

In Lemma 6, we consider the expression E(ᾱ).

LEMMA 6

E(ᾱ) = − m

12
h2f ′(0) + O(h3).

Proof Using Lemma 4 and Theorem C1 we see that

E(ᾱ) =
m−1∑
i=1

m+i−1∑
j=i

ci,j+1−iE(αj )

=
m−1∑
i=1

m+i−1∑
j=i

ci,j+1−i

(
f (0)bj + f ′(0)αj,1 + O(h3)

)

= −h2f ′(0)
m

12
+ O(h3).

�
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LEMMA 7 Let X1, . . . , XN and X be independent identically distributed random variables.
Then

E(αiαj ) =
(

1 − 1

N

)
E(αi)E(αj ) + 1

N
E(Bi(X)Bj (X))

E(αiαjαk) = (N − 1)(N − 2)

N2
E(αi)E(αj )E(αk) + 1

N2
E(Bi(X)Bj (X)Bk(X))

+ (N − 1)

N2

(
E(Bi(X)Bj (X))E(Bk(X)) + E(Bi(X))E(Bj (X)Bk(X))

+ E(Bi(X)Bk(X))E(Bj (X))
)
,

and

E(αiαjαkαl) = N(N − 1)(N − 2)(N − 3)

N4

(
E(αi)E(αj )E(αk)E(αl)

)
+ N(N − 1)(N − 2)

N4

(
E(BiBj )E(Bk)E(Bl) + E(BiBk)E(Bj )E(Bl)

+ E(BiBl)E(Bj )E(Bk) + E(BjBk)E(Bi)E(Bl) + E(BjBl)E(Bi)E(Bk)

+ E(BkBl)E(Bi)E(Bj )
) + N(N − 1)

N4

(
E(BiBj )E(BkBl)

+ E(BiBk)E(BjBl) + E(BiBl)E(BjBk)
) + N(N − 1)

N4

(
E(BiBjBk)E(Bl)

+ E(BiBjBl)E(Bk) + E(BiBkBl)E(Bj ) + E(BjBkBl)E(Bi)
)

+ N

N4
E(BiBjBkBl).

Proof Recalling that αi = 1/N
∑N

k=1 Bi(Xk), these results are easily obtained using the
independence of Xk and Xl when k �= l and the application of simple counting arguments [see
also ref. 24]. �

COROLLARY 2 Let Pijkl ≡ E(αiαjαkαl) − E(αiαk)E(αjαl) and define

Mi = max
(i−m)h≤x≤ih

f (x)

and

M0 = max
0≤x≤2(m−1)h

f (x).

If k, l ≤ 2m − 2 and i, j ≥ 3m − 2, then

0 ≤ Pijkl ≤ 10M0Mi

h2

N
+ O

(
h

N2

)
.

Proof We note first that the subscript range for i, j, k and l have the property that the basis
function Bi(x) and Bj(x) do not overlap the basis functions Bk(x) and Bl(x). So expressions
like E(Bi(x)Bk(x)), for example, are zero. We then observe that Pijkl is nonnegative by
the Cauchy–Schwarz inequality. Finally, since 0 ≤ Bi(x) ≤ 1 and

∫ ∞
0 Bi(x) dx ≤ h, then by
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Lemma 7,

Pijkl = E(αiαjαkαl) − E(αiαk)E(αjαl)

≤ 1

N
|−8E(Bi)E(Bj )E(Bk)E(Bl) + E(BiBj )E(Bk)E(Bl)

+ E(Bi)E(Bj )E(BkBl)| + O

(
h

N2

)

≤ 10E(Bi)E(Bk)

N
+ O

(
h

N2

)

≤ 10MiM0h
2

N
+ O

(
h

N2

)
.

�

In preparation for Lemmas 8 and 9, we define β∗
i = α∗

Li
− ᾱαi for i = 1, . . . , m − 1,

β∗
i = −ᾱαi for i ≥ m and

ĝN (x) =
∞∑
i=1

β∗
i

Bm
i (x)

bi

.

Then for f̂C(x) as defined by equation (3) we have for I = [0, ∞), f̂C(x) = f̂N (x) + ĝN (x).
Finally, we define the operator �f = f − E(f ) and observe that �f̂C = �f̂N + �ĝN .

In Lemmas 8 and 9, we write B(n) for the nth derivative of Bm suppressing the explicit
dependence of the order of the spline. These two lemmas are used in the computation of the
integrated variance. Their proofs are also straightforward and have been omitted.

LEMMA 8

E

((
�f̂

(n)
N

)2
)

dx =
∞∑
i=1

∞∑
j=1

(E(αiαj ) − E(αi)E(αj ))

∫ ∞

0

B
(n)
i (x)

bi

B
(n)
j (x)

bj

dx.

LEMMA 9

E

((
�ĝ

(n)
N

)2
)

=
∞∑
i=1

∞∑
j=1

(E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j ))

∫ ∞

0

B
(n)
i (x)

bi

B
(n)
j (x)

bj

dx.

6. Integrated squared bias

To begin this section, we state a few final facts concerning the basis functions. First of all,
since d/dx Nm(x) = Nm−1(x) − Nm−1(x − 1), one can show [cf. 25] that∣∣∣∣ dn

dxn
Bm

i (x)

∣∣∣∣ ≤ 2n

hn
.

So,∣∣∣∣
∫ b

a

dn

dxn
Bm

i (x)
dn

dxn
Bm

j (x) dx

∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣∣ dn

dxn
Bm

i (x)
dn

dxn
Bm

j (x)

∣∣∣∣ dx ≤ 4n

h2n

∫
Si,j

1 dx ≤ m4n

h2n−1
,

where Si,j is the intersection of the supports of Bm
i (x) and Bm

j (x). We now present the proof

of the formula for the integrated squared bias of the estimator f̂
(n)
C for m ≥ n + 2.
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Proof of Theorem 2 We break the integrated squared bias into three integrals and evaluate
them separately.∫ ∞

0

(
E
(
f̂

(n)
C (x)

)
− f (n)(x)

)2
dx =

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)2
dx (7)

− 2
∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
ᾱf̂

(n)
N (x)

)
dx

(8)

+
∫ ∞

0

(
E
(
ᾱf̂

(n)
N (x)

))2
dx. (9)

Integrals (7) and (8) and (9) are evaluated in order.

Integral (7): Since pM
i = O(hM) and dn/dxnBm

i (x) = O(h−n), it follows that
pn+2

i (xl)dn/dxnBm
i (x) = O(h2). So, by Lemma 1,

E
(
f

∗(n)
N (x)

)
= f (n)(xl) + f (n+1)(xl)(x − xl) + O(h2).

Since

f (n)(x) = f (n)(xl) + f (n+1)(xl)(x − xl) + O(h2),

then ∫ (m−1)h

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)2
dx = O(h5).

For x > (m − 1)h, f ∗
N(x) is identical to the uncorrected estimator and hence from the

analysis in ref. [12]∫ ∞

(m−1)h

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)2
dx = h4Cm,n

∫ ∞

(m−1)h

(
f (n+2)(x)

)2
dx + O(h5)

= h4Cm,n

∫ ∞

0

(
f (n+2)(x)

)2
dx + O(h5),

where Cmn = (m/12)2 if m ≥ n + 3 and Cmn = 1/720 + (m/12)2 if m = n + 2 [see ref. 12].
Thus, we conclude that Integral (7) satisfies∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)2
dx = h4Cm,n

∫ ∞

0

(
f (n+2)(x)

)2
dx + O(h5).

Integral (8): Using linearity and Lemma 7, we observe that∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
ᾱf̂

(n)
N (x)

)
dx

=
(

1 − 1

N

)
E(ᾱ)

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx

+ 1

N

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)

×
∞∑
i=1

(
m−1∑
k=1

m+k−1∑
l=k

ck,l+1−kE(Bi(X)Bl(X))

)
B

(n)
i (x)

bi

dx.
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Since Bi(x)Bl(x) = 0 when |i − l| ≥ m and B
(n)
i (x) = O(h−n), it follows that

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)

×
∞∑
i=1

(
m−1∑
k=1

m+k−1∑
l=k

ck,l+1−kE(Bi(X)Bl(X))

)
B

(n)
i (x)

bi

dx = O(h2−n),

therefore

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
ᾱf̂

(n)
N (x)

)
dx

=
(

1 − 1

N

)
E(ᾱ)

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx

+ O

(
h2

Nhn

)
.

We may also observe that

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx

=
∫ ∞

(m−1)h

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx + O(h3).

Therefore, apply Lemma 2 to a typical subinterval to obtain

∫ mh

(m−1)h

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx

=
∫ mh

(m−1)h

[
2m−1∑
i=m

pn+2
i

dn

dxn
Bm

i (x) − f (n+2)(ηx)
(x − xm)2

2

]

×
2m−1∑
j=m

pn
j

dn

dxn
Bm

j (x) dx

=
2m−1∑
i=m

2m−1∑
j=m

�npn+2
i

hn

�npn
j

hn

∫ mh

(m−1)h

Bm−n
i (x)Bm−n

j (x) dx

−
2m−1∑
j=m

�npn
j

hn

∫ mh

(m−1)h

f (n+2)(ηx)
(x − xm)2

2
Bm−n

j (x) dx

=
2m−1∑
i=m

2m−1∑
j=m

�npn+2
i

hn+2

�npn
j

hn

∫ mh

(m−1)h

Bm−n
i (x)Bm−n

j (x)

h
dx h3

−
2m−1∑
j=m

�npn
j

hn
f (n+2)(ηj )

∫ mh

(m−1)h

(x − xm)2

2

Bm−n
j (x)

h3
dx h3
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by Theorem 8. Now pn
i /hn is f (n)(ξj ) times a constant or the sum of two such terms where

the constant is independent of h. So this last expression can be written as

h2
∑

k

f (n)(ξk)f
(n+2)(ηk)dkh

where dk is independent not only of h but also of the interval. So conclude by Theorem 7 that

∫ ∞

0

(
E(f̂

∗(n)
N (x) − f (n)(x)

)
E
(
f̂

(n)
N (x)

)
dx

= λh2
∫ ∞

(m−1)h

f (n)(x)f (n+2)(x) dx + O(h3)

= λh2
∫ ∞

0
f (n)(x)f (n+2)(x) dx + O(h3)

for some constant λ. Letting xm = (m − 1/2)h, we can see by Lemma 2 that

λ =
∫ mh

(m−1)h

(
g

(n)
n+2(x, xm) − (x − xm)2

2

)
g(n)

n (x, xm)

h3
dx.

When m = n + 2, g
(n)
n+2(x, xm) = h2(2m + 1)/24 and when m > n + 2, g

(n)
n+2(x, xm) =

h2m/12 + (x − xm)2/2. In either case, we determine that λ = m/12.
By Lemma 6, we then conclude that

∫ ∞

0

(
E
(
f̂

∗(n)
N (x)

)
− f (n)(x)

)
E
(
ᾱf̂

(n)
N (x)

)
dx

= −
( m

12

)2
h4f ′(0)

∫ ∞

0
f (n)(x)f (n+2)(x) dx + O(h5).

Integral (9): This integral can be similarly evaluated using the ideas for Integrals (7) and (8)
and Lemma 3 to yield

∫ ∞

0

(
E
(
ᾱf̂

(n)
N (x)

))2
dx = h4f ′(0)2

( m

12

)2
∫ ∞

0

(
f (n)(x)

)2
dx + O(h5).

The final result is now easily obtained by adding together the values of Integrals (7), (8)
and (9). �

7. Integrated variance

We now present the integrated variance of the estimator f̂
(n)
C for m ≥ 2. Throughout this

section, we use Bi(x) instead of Bm
i (x).

Proof of Theorem 3 We break the integrated variance into three integrals and evaluate them
separately. So recalling that �f̂C = �f̂N + �ĝN , the integrated variance of f̂

(n)
C may be
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written as ∫ ∞

0
E

((
�f̂

(n)
C

)2
)

dx

=
∫ ∞

0
E

((
�f̂

(n)
N

)2
)

dx (10)

+ 2
∫ ∞

0
E
(
�f̂

(n)
N �ĝ

(n)
N

)
dx (11)

+
∫ ∞

0
E

((
�ĝ

(n)
N

)2
)

dx. (12)

Integrals (10) and (12) are evaluated first, and these results are then used in evaluating
Integral (11).

Integral (10): We first note that since h/m! = b1 ≤ bi for each i that∣∣∣∣∣
∫ ∞

0
B

(n)
i (x)

B
(n)
j (x)

bj

dx

∣∣∣∣∣ ≤ m!m4n

h2n
.

So express (10) as

∫ (m−1)h

0
E

((
�f̂

(n)
N

)2
)

dx +
∫ ∞

(m−1)h

E

((
�f̂

(n)
N

)2
)

dx.

Then, using Lemma 8 for the first step followed by an application of Lemma 7 and the integral
mean value theorem, we see that

∫ (m−1)h

0
E

((
�f̂

(n)
N

)2
)

dx

=
∫ (m−1)h

0

2(m−1)∑
i=1

2(m−1)∑
j=1

(E(αiαj ) − E(αi)E(αj ))
B

(n)
i (x)

bi

B
(n)
j (x)

bj

dx

=
2(m−1)∑

i=1

2(m−1)∑
j=1

1

N
(E(BiBj ) − E(Bi)E(Bj ))

∫ (m−1)h

0

B
(n)
i (x)

bi

B
(n)
j (x)

bj

dx

= 1

N

2(m−1)∑
i=1

2(m−1)∑
j=1

E

(
Bi

bi

Bj

)
− E

(
Bi

bi

)
E(Bj )

∫ (m−1)h

0
B

(n)
i (x)

B
(n)
j (x)

bj

dx

≤ m! m4n

Nh2n

2(m−1)∑
i=1

2(m−1)∑
j=1

E

(
Bi

bi

Bj

)
+ E

(
Bi

bi

)
E(Bj )

≤ m! m4n

Nh2n

2(m−1)∑
i=1

E

(
Bi

bi

)
+ E

(
Bi

bi

)

= m!2m4n

Nh2n

2(m−1)∑
i=1

f (ξi) = O

(
1

Nh2n

)
,
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where ξi is a point in [0, (2m − 1)h]. Additionally, we know from Redner [12] that for
m ≥ n + 1, ∫ ∞

(m−1)h

E

((
�f̂

(n)
N

)2
)

dx = Dm,n

Nh1+2n
+ O

(
1

Nh2n

)
.

Hence it is apparent that Integral (10) satisfies∫ ∞

0
E

((
�f̂

(n)
N

)2
)

dx = Dm,n

Nh1+2n
+ O

(
1

Nh2n

)
.

To finish the proof, we need only show that Integral (11) is O
(√

h/Nh1+2n
)

and

Integral (12) is O
(
1/Nh2n

)
and are hence higher order terms. We begin with Integral (12).

Integral (12): We also write Integral (12) as the sum of two integrals:

∫ 4(m−1)h

0
E

((
�ĝ

(n)
N

)2
)

dx +
∫ ∞

4(m−1)h

E

((
�ĝ

(n)
N

)2
)

dx. (13)

Then, by Lemma 9, we have that the second integral in equation (13) is∫ ∞

4(m−1)h

E

((
�ĝ

(n)
N

)2
)

dx

=
∫ ∞

4(m−1)h

∞∑
i=4m−3

∞∑
j=4m−3

(E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j ))
B

(n)
i (x)

bi

B
(n)
j (x)

bj

dx

=
∞∑

i=4m−3

i+m−1∑
j=i−m+1

(E(αiᾱαj ᾱ) − E(αiᾱ)E(αj ᾱ))

∫ ∞

4(m−1)h

B
(n)
i (x)

h

B
(n)
j (x)

h
dx

since ᾱ is a linear combination of α1, . . . , α2m−2 and Bi(x) and Bj(x) do not overlap when
|i − j | ≥ m. If we write ᾱ = ∑2m−2

k=1 dkαk , then

E(αiᾱαj ᾱ) − E(αiᾱ)E(αj ᾱ) =
∑

k

∑
l

dkdl

(
E(αiαkαjαl) − E(αiαk)E(αjαl)

)

=
2m−2∑
k=1

2m−2∑
l=1

dkdlPijkl,

where Pijkl = E(αiαkαjαl) − E(αiαk)E(αjαl) as in Corollary 2. Hence,

∫ ∞

4(m−1)h

E

((
�ĝ

(n)
N

)2
)

dx

=
∞∑

i=4m−3

i+m−1∑
j=i−m+1

∑
k

∑
l

dkdlPijkl

∫ ∞

4(m−1)h

B
(n)
i (x)

h

B
(n)
j (x)

h
dx

≤ 4nmKh

h1+2n
·

∞∑
i=3m−2

∞∑
j=3m−2

∑
k

∑
l

Pijkl

where Kh = max dkdl and is O(1).
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As each of the terms in Pijkl is O(h/N), then by Lemma 7 and Theorem 6

∫ ∞

4(m−1)h

E

((
�ĝ

(n)
N

)2
)

dx ≤ 10cM04nmKh

h2nN

∞∑
i=4m−3

Mih + O

(
1

h2nN

)

= O

(
1

h2nN

)
,

where the positive constant c accounts for the finite number of terms with subscripts j, k and
l for each index i.

We now evaluate the rest of Integral (10). By another application of Lemma 9 we have

∫ 4(m−1)h

0
E((�ĝN)2) dx

=
∫ 4(m−1)h

0

5m−5∑
i=1

5m−5∑
j=1

(E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j ))
B

(n)
i (x)

bi

B
(n)
j (x)

bj

dx

≤
5m−5∑
i=1

5m−5∑
j=1

|E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j )|
∫ 4(m−1)h

0

B
(n)
i (x)

bi

B
(n)
j (x)

bj

dx

≤
5m−5∑
i=1

5m−5∑
j=1

|E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j )| (m!)2m4n

h2n+1

= O

(
1

Nh2n

)

since |E(β∗
i β∗

j ) − E(β∗
i )E(β∗

j )| = O(h/N) and there are only a finite number of terms.
After combining our analysis of the first and second integrals in equation (13) we have that

Integral (12) is ∫ ∞

0
E

((
�ĝ

(n)
N

)2
)

dx = O

(
1

Nh2n

)
.

Integral (11): By two applications of the Cauchy–Schwarz inequality we have for
equation (11) that

(∫ ∞

0
|E(�f̂

(n)
N �ĝ

(n)
N )| dx

)2

≤
(∫ ∞

0

√
E((�f̂

(n)
N )2)

√
E((�ĝ

(n)
N )2) dx

)2

≤
∫ ∞

0
E((�f̂

(n)
N )2) dx ·

∫ ∞

0
E((�ĝ

(n)
N )2) dx.

But we know that Integral (10) satisfies∫ ∞

0
E((�f̂

(n)
N )2) dx = Dm,n

Nh1+2n
+ O

(
1

Nh2n

)

and Integral (12) satisfies ∫ ∞

0
E((�ĝ

(n)
N )2) dx = O

(
1

Nh2n

)
,
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therefore∫ ∞

0
E((�f̂

(n)
N )2) dx ·

∫ ∞

0
E((�ĝ

(n)
N )2) dx = O

(
1

N2h1+4n

)
= O

(
h

(Nh1+2n)2

)
.

Taking the square root of this term gives us that Integral (11) is

∫ ∞

0
|E(�f̂

(n)
N �ĝ

(n)
N )| dx = O

( √
h

Nh1+2n

)
,

and this is the desired result.
Finally, by combining the analysis of Integrals (10), (11) and (12) we observe that the

integrated variance of the nth derivative of the estimator f̂
(n)
C with m ≥ 2 is

∫ ∞

0
E((�f̂

(n)
C (x))2) dx = Dm,n

Nh1+2n
+ O

( √
h

Nh1+2n

)
+ O

(
1

Nh2n

)
.

�

8. Discussion

In figure 1, we see the graph of the B-spline nonparametric density estimate without boundary
correction (represented as a solid line) as compared to the true density function (represented
as a dashed line). One can see the effects on the boundary where the integrated square bias is
only O(h2). The estimate was made using a quadratic (m = 3) B-spline density estimate with
h = 0.2 and with 20,000 data points. We used a large number of points so that the estimate
would be very smooth so that one could easily see the bias at the endpoints. In figure 2, we
have added the endpoint correction as described in this paper. We see that the affects of the
bias are greatly reduced.

Experience with the B-spline density estimator with endpoint correction has shown us,
however, that the variation at the endpoints is quite large for smaller sample sizes. Furthermore,
the problem is exasperated by increases in the order m of the spline.

Figure 1. Estimated density without end correction. Dashed line is the true density, solid line is the estimated
density (m = 3, h = 0.2 and N = 20,000).
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Figure 2. Estimated density with end correction. Dashed line is the true density, solid line is the estimated density
(m = 3, h = 0.2 and N = 20,000).

We note by looking at Appendix B that some of the correction coefficients for larger values
of m are quite large and this too hints that there may still be practical problems related to
small sample sizes at the endpoints of the intervals. We also note that while Integral (10) in
the proof of Theorem 3 is asymptotically small, the constant in the bound grows large rapidly
with m. Finally, one observes that the number of sample points that fall in the support of the
basis functions that are truncated at the boundary will be relatively small. In particular, the
number of data points that lie in the support of B1 will be very small.

A number of possible solutions present themselves. The first comes from noting that it
may not be necessary to correct all m − 1 derivatives in order to get a good estimate of the
probability density function. In fact, only the value of the estimate and its first derivative
may need to be corrected in order to get a good estimate of the probability density function.
This, however, leaves us with too few equations to define the correction coefficients and
further study is needed to determine the best way to resolve this ambiguity. Another possible
approach is to use equally space knots in the interior of the domain, but to have multiple
knots at the endpoint(s). This approach is similar to the beta kernel estimate of Chen [18].
This approach needs to be investigated numerically and a theory for the rate of convergence
developed. Finally, these piecewise polynomial B-spline methods need to be compared through
simulations with local polynomial density estimate as presented by Cheng et al. [20].

The ideas presented in this paper can be used to modify the product tensor B-spline density
estimate of [13], but as of this date the theory for these estimators has not yet been investigated.
This is an important step as the ultimate goal of this research is to develop nonparametric den-
sity estimators suitable for multidimensional problem. Accurate estimates of multidimension
probability density functions will require large sample sizes and B-spline density estimators
are well suited for handling very large data sets.
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Appendix A

The zeros of a real valued function

The following theorem can be easily proved using the ideas concerning the zeros of orthogonal
polynomials [see ref. 26, page 236].

THEOREM A1 Suppose that f is not identically zero on the interval [a, b] and let
f ∈ C1[a, b] satisfy

∫ b

a
f (x)xj dx = 0 for j = 0, 1, . . . , m − 1. Then f has at least m

changes of sign on the interval [a, b].
COROLLARY A1 Let {Bm

j (x)}∞j=−∞ be B-spline basis functions based on uniformly spaced
knots. If the support of each Bm

j overlaps the interval [a, b] for j = 1, 2, . . . , m, then for
m ≥ 1 the matrix

A =




∫ b

a
Bm

1 (x) dx
∫ b

a
Bm

2 (x) dx · · · ∫ b

a
Bm

m(x) dx∫ b

a
xBm

1 (x) dx
∫ b

a
xBm

2 (x) dx · · · ∫ b

a
xBm

m(x) dx
...

...
...

...∫ b

a
xm−1Bm

1 (x) dx
∫ b

a
xm−1Bm

2 (x) dx · · · ∫ b

a
xm−1Bm

m(x) dx




is nonsingular.
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Proof The result is clearly true when m = 1. So consider the case that m ≥ 2 and assume
that A is singular. As the columns are linearly dependent there are constants c1, c2, . . . , cm,
not all of which are zero, so that

∫ b

a

m∑
j=1

cjBj (x)xk dx = 0 for k = 0, 1, . . . , m − 1.

Let f (x) = ∑m
j=1 cjBj (x), then when m ≥ 3, f is continuously differentiable and by

Theorem A1, f changes sign at least m times. When m = 2, f is piecewise linear and if
f changes sign at some point x1, then clearly g(x) = f (x)/(x − x1) can be extended to a
continuous function on [a, b]. So, by the argument made in Theorem A1, we can see that f

changes sign at least twice. However, by Theorem 6.2 of Chui [25], f changes sign at most
m − 1 times. Hence A is nonsingular for all m ≥ 1. �

Proof of Theorem 1 The system of equations

m+i−1∑
j=i

ci,j+1−iαj,k = ai,kbi − αi,k for i = 1, . . . , m − 1 and k = 0, . . . , m − 1 (A1)

can be thought of as m − 1 independent subsystems, with one subsystem for each i, 1 ≤ i ≤
m − 1. For each i, the subsystem of equations can be written in the following matrix form and
has a unique solution by Corollary A1:




∫ ∞

0
Bm

i (x) dx

∫ ∞

0
Bm

i+1(x) dx · · ·
∫ ∞

0
Bm

i+m−1(x) dx

...
...

...
...∫ ∞

0

xk

k! B
m
i (x) dx

∫ ∞

0

xk

k! B
m
i+1(x) dx · · ·

∫ ∞

0

xk

k! B
m
i+m−1(x) dx

...
...

...
...∫ ∞

0

xm−1

(m − 1)!B
m
i (x) dx

∫ ∞

0

xm−1

(m − 1)!B
m
i+1(x) dx · · ·

∫ ∞

0

xm−1

(m − 1)!B
m
i+m−1(x) dx




×




ci,1

ci,2
...

ci,m


 =




ai,0bi − αi,0
...

ai,kbi − αi,k

...

ai,m−1bi − αi,m−1




.

�
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Appendix B

Correction coefficients and variance constants

Table B1. Correction coefficients ci,j in Theorem 1 for m = 4.

ci,j j = 1 j = 2 j = 3 j = 4

i = 1 38.7179 −5.05425 1.12413 −0.163411
i = 2 3.30915 −2.84982 1.36141 −0.284906
i = 3 0.175755 −0.330564 0.214622 −0.052489

Table B2. Correction coefficients ci,j in Theorem 1 for m = 5.

ci,j j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 302.154 −21.6381 3.90324 −0.771241 0.0904133
i = 2 27.4009 −14.3729 7.04843 −2.39765 0.381747
i = 3 1.80477 −3.03309 2.53541 −1.13894 0.212642
i = 4 0.0731975 −0.189871 0.196904 −0.0996393 0.0200189

Table B3. Correction coefficients ci,j in Theorem 1 for m = 6.

ci,j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 2387.97 −99.2459 13.1787 −2.50337 0.433611 −0.0424649
i = 2 239.398 −78.355 31.5102 −11.8056 3.10517 −0.395185
i = 3 14.8973 −17.683 14.9562 −8.61075 2.92148 −0.436207
i = 4 0.919271 −2.36885 2.9319 −2.08417 0.802788 −0.130181
i = 5 0.0263641 −0.0886179 0.128433 −0.100192 0.0409746 −0.00692504

Table B4. Integrated variance constants Dm,n in Theorems 3 and 5.

Deriv. m = 2 m = 3 m = 4 m = 5 m = 6

n = 0 0.5 0.396528 0.342609 0.306746 0.280334
n = 1 0.402778 0.250972 0.179099 0.136768
n = 2 0.569444 0.312018 0.197559
n = 3 0.939393 0.475039
n = 4 1.66292

Appendix C

Let � ≡ −∑m−1
i=1

∑m+i−1
j=i ci,j+1−iαj,1/h2, where {{ci,j }m−1

i=1 }mj=1 satisfy equation (A1).
Through a straightforward but elaborate computation, we will prove that � = m/12. For
additional verification, the result has also been tested for 2 ≤ m ≤ 30 by direct integration
using Mathematica [23].
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LEMMA C1

� =
m∑

i=0

∫ m

m−i

(
y − m

2

)
Nm(y) dy.

Proof Observe that ai,1 = ∫ ∞
−∞ xBm

i (x)/h dx is the mean value of a random variable with
density Bm

i (x)/h. Since this density is symmetric about its mean this equals the mode of the
distribution which is (i − (m/2))h. Hence

� = −1

h2

m−1∑
i=1

m+i−1∑
j=i

ci,j+1−iαj,1

= −1

h2

m−1∑
i=1

(ai,1bi − αi,1)

= −1

h2

m−1∑
i=1

h
(
i − m

2

)
bi − αi,1

= −1

h2

m−1∑
i=1

(
h
(
i − m

2

) ∫ ∞

0
Bm

i (x) dx −
∫ ∞

0
xBm

i (x) dx

)

= −1

h2

m−1∑
i=1

∫ ∞

0

(
h
(
i − m

2

)
− x

)
Bm

i (x) dx

= −1

h

m−1∑
i=1

∫ ∞

0

(
i − m

2
− x

h

)
Nm

(x

h
+ m − i

)
dx

=
m−1∑
i=1

∫ ∞

m−i

(
y − m

2

)
Nm(y) dy

=
m∑

i=0

∫ m

m−i

(
y − m

2

)
Nm(y) dy.

So define

p(t) =
m∑

i=0

χ[m−i,m]Nm(t),

and observe that

� =
∫ ∞

0

(
t − m

2

)
p(t) dt

and that ∫ ∞

0
p(t) dt =

m∑
i=0

∫ m

m−i

Nm(t) dt = m + 1

2

by symmetry. So � can be determined using the Laplace transform and the fact that

d

ds
L(p(t))(s)|s=0 = −

∫ ∞

0
tp(t) dt.

�
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The following result is a straightforward calculation and the details have been omitted.

LEMMA C2

d

ds
L(p(t)) = A(s) + B(s),

where

A(s) =
m∑

i=0

m∑
k=m−i+1

(−1)k
(m

k

) e−ks

sm

and

B(s) =
m∑

i=0

m−i∑
k=0

(−1)k
(m

k

) m−1∑
p=0

e−s(m−i)

p!sm−p
(m − i − k)p.

LEMMA C3

d

ds
L(p(t))|s=0 = 1

(m + 1)!
m∑

i=0

m∑
k=0

(−1)k
(m

k

)
(−k)m+1

+ 1

(m + 1)!
m∑

i=0

m−i∑
k=0

(−1)k
(m

k

)
{−(m − i − k)m+1

+ (m + 1)(m − i)(m − i + k)m}.

Proof We begin by noting that, since p(t) is piecewise continuous and has bounded support,
L(p(t)) has derivatives of all orders on [0, ∞). We also note that for any sufficiently smooth
function g(s) that if

g(s) = g(m+1)(0)sm+1

(m + 1)! + O(sm+2)

then

d

ds

g(s)

sm
|s=0 = gm+1(0)

(m + 1)! .

So we evaluate

d

ds
smA(s)|s=0 = 1

(m + 1)!
dm+1

dsm+1

m∑
i=0

m∑
k=m−i+1

(−1)k
(m

k

)
e−ks |s=0 (A2)

= 1

(m + 1)!
m∑

i=0

m∑
k=m−i+1

(−1)k
(m

k

)
(−k)m+1.

To evaluate the second term we note that

dm

dsm
speas |s=0 =

(
m

p

)
p!am−p
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for m ≥ p. Hence

d

ds
smB|s=0

= 1

(m + 1)!
dm+1

dsm+1

m∑
i=0

m−i∑
k=0

(−1)k
(m

k

) m−1∑
p=0

spe−s(m−i)

p! (m − i − k)p

= 1

(m + 1)!
m∑

i=0

m−i∑
k=0

(−1)k
(m

k

) m−1∑
p=0

1

p!
(

m + 1

p

)
p! (−(m − i)m+1−p

)
(m − i − k)p

= 1

(m + 1)!
m∑

i=0

m−i∑
k=0

(−1)k
(m

k

)


m+1∑
p=0

(
m + 1

p

) (
(−(m − i))m+1−p(m − i − k)p

)

−(m − i − k)m+1 + (m + 1)(m − i)(m − i − k)m




= 1

(m + 1)!
m∑

i=0

m−i∑
k=0

(−1)k
(m

k

) {
(−k)m+1 − (m − i − k)m+1

+ (m + 1)(m − i)(m − i − k)m
}

(A3)

Combining equations (A2) and (A3) we obtain the final result. �

LEMMA C4

d

ds
L(p(t))|s=0 = −m

3
− m2

4
.

Proof This result is obtained by simplifying the expression obtained in Lemma C3. We
begin by noting that

1

(m + 1)!
m∑

i=0

m∑
k=0

(−1)k
(

m

k

)
(−k)m+1 = − m + 1

(m + 1)!
m∑

k=0

(−1)m−k

(
m

k

)
km+1

= − m + 1

(m + 1)!
m∑

k=0

(−1)m−k

(
m

k

)
(j + k)m+1|j=0

= − m + 1

(m + 1)!�
mjm+1|j=0

= − m + 1

(m + 1)! (m + 1)!
(
j + m

2

)
|j=0

= −(m + 1)
(m

2

)
.
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Secondly, we observe that

−1

(m + 1)!
m∑

i=0

m−i∑
k=0

(−1)k
(

m

k

)
(m − i − k)m+1

= −1

(m + 1)!
m∑

k=0

(−1)k
(

m

k

) m−k∑
i=0

(m − i − k)m+1

= −1

(m + 1)! (−1)m
m∑

k=0

(−1)m−k

(
m

k

) m−(j+k)∑
i=0

(m − i − (j + k))m+1|j=0

= −1

(m + 1)! (−1)m�m

m−j∑
i=0

(m − i − j)m+1|j=0

= −1

(m + 1)! (−1)m�m−1

[
m−j−1∑

i=0

(m − i − (j + 1))m+1 −
m−j∑
i=0

(m − i − j)m+1

] ∣∣∣∣∣
j=0

= −1

(m + 1)! (−1)m�m−1(−1)(m − j)m+1|j=0

= −1

(m + 1)!�
m−1(j − m)m+1|j=0

= −1

(m + 1)!�
m−1

(
j + −m − 1

2
− m − 1

2

)m+1
∣∣∣∣∣
j=0

= −1

(m + 1)! (m + 1)!
(

m − 1

24
+ (j + (−m − 1)/2)2

2

)∣∣∣∣
j=0

= −m − 1

24
− (m + 1)2

8
.

Finally, we consider the expression

1

(m + 1)!
m∑

k=0

(−1)k
(

m

k

) m−k∑
i=0

(m + 1)(m − i)(m − i − k)m

= (−1)m

m!
m∑

k=0

(−1)m−k

(
m

k

) m−(j+k)∑
i=0

(m − i)(m − i − (j + k))m|j=0

= (−1)m

m! �m

m−j∑
i=0

(m − i)(m − i − j)m|j=0.
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Observe that

�

m−j∑
i=0

(m − i)(m − i − j)m

=
m−(j+1)∑

i=0

(m − i)(m − i − (j + 1))m −
m−j∑
i=0

(m − i)(m − i − j)m

= −m(m − j)m +
m−j−1∑

i=0

(m − i − j − 1)m.

Therefore, we consider two terms,

(−1)m

m! �m−1(−m(m − j))m|j=0

and

(−1)m

m! �m−1
m−j−1∑

i=0

(m − i − j − 1)m|j=0.

The first of these terms is easy to evaluate since

(−1)m

m! �m−1(−m(m − j)m)|j=0 = (−1)2m+1

m! m�m−1(j − m)m)|j=0

= −1

m! mm!
(

j − m + 1

2

)∣∣∣∣
j=0

= m
m + 1

2
.

To evaluate the second term, we first note that

�

m−j−1∑
i=0

(m − i − j − 1)m

=
m−(j+1)−1∑

i=0

(m − i − (j + 1) − 1)m −
m−j−1∑

i=0

(m − i − j − 1)m

= −m(m − j − 1)m.
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So

(−1)m

m! �m−1
m−j−1∑

i=0

(m − i − j − 1)m|j=0

= (−1)m+1

m! �m−2(m − j − 1)m|j=0

= −1

m! �m−2

(
j − m − 2

2
− m

2

)m∣∣∣∣
j=0

= −m − 2

24

(
(j − (m/2))2

2

)2
∣∣∣∣∣
j=0

= −m − 2

24
− m2

8
.

Then the argument is complete by observing that

−m
m + 1

2
− m − 1

24
− (m + 1)2

8
+ m

m + 1

2
− m − 2

24
− m2

8
= −m

3
− m2

4
.

�

THEOREM C1 � = m

12
.

Proof This result is now easily obtained since

� = −
(−m

3
+ −m2

4

)
− m

2

m + 1

2
= m

12
.

�


