1. Given vectors $\vec{a}=\vec{\imath}-2 \vec{\jmath}, \vec{b}=<-2,3>$. Find
(a) a unit vector \vec{u} that has the same direction as $2 \vec{b}+\vec{a}$.
(b) angle between \vec{a} and \vec{b}
(c) $\operatorname{comp}_{\vec{b}} \vec{a}, \operatorname{proj}_{\vec{b}} \vec{a}$.
2. Find the work done by a force of 20 lb acting in the direction $\mathrm{N} 50^{\circ} \mathrm{W}$ in moving an object 4 ft due west.
3. Find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.
4. Find vector and parametric equations for the line passing through the points $A(1,-3)$ and $B(2,1)$.
5. Find all points of discontinuity for the function

$$
f(x)= \begin{cases}x^{2}+1 & , \quad \text { if } x<2 \\ x+2 & , \\ \text { if } x \geq 2\end{cases}
$$

6. Find the vertical and horizontal asymptotes of the curve $y=\frac{x^{2}+4}{3 x^{2}-3}$.
7. Find $\frac{d y}{d x}$ for each function
(a) $y=(\sin x)^{x}$.
(b) $y=\frac{\sqrt[5]{2 x-1}\left(x^{2}-4\right)^{2}}{\sqrt[3]{1+3 x}}$
(c) $y(t)=\sin ^{-1} t, x(t)=\cos ^{-1}\left(t^{2}\right)$.
(d) $2 x^{2}+2 x y+y^{2}=x$.
8. Find the equation of the tangent line to the curve $y=x \sqrt{5-x}$ at the point $(1,2)$.
9. A particle moves on a vertical line so that its coordinate at time t is $y=t^{3}-12 t+3, t \geq 0$.
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward?
(c) Find the distance that particle travels in the time interval $0 \leq t \leq 3$
10. The vector function $\vec{r}(t)=<t, 25 t-5 t^{2}>$ represents the position of a particle at time t. Find the velocity, speed, and acceleration at $t=1$.
11. Find $y^{\prime \prime}$ if $y=\mathrm{e}^{-5 x} \cos 3 x$
12. Find $\frac{d^{50}}{d x^{50}} \cos 2 x$
13. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of 15 ft / s. When he passes under the balloon it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 s later?
14. Find the quadratic approximation of $1 / x$ for x near 4 .
15. If $f(x)=x+x^{2}+\mathrm{e}^{x}$ and $g(x)=f^{-1}(x)$, find $g^{\prime}(1)$.
16. Solve the equation $\ln (x+6)+\ln (x-3)=\ln 5+\ln 2$
17. Find $\cos ^{-1}\left(\sin \frac{5 \pi}{4}\right)$.
18. Evaluate each limit:
(a) $\lim _{x \rightarrow 0} \frac{\sin x+\sin 2 x}{\sin 3 x}$
(b) $\lim _{x \rightarrow 0}(\cot x-\csc x)$
(c) $\lim _{x \rightarrow 0} x^{\sin x}$
19. Find the absolute maximum and absolute minimum values of $f(x)=x^{3}-2 x^{2}+x$ on $[-1,1]$.
20. A cup of coffee has a temperature of $200^{\circ} \mathrm{F}$ and is in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 10 min the temperature of the coffee is $150^{\circ} \mathrm{F}$.
(a) What is the temperature of the coffee after 15 min ?
(b) When will the coffee have cooled to $100^{\circ} \mathrm{F}$?
21. For the function $y=x^{2} e^{x}$ find
(a) All asymptotes.
(b) Intervals on which the function is increasing/decreasing.
(c) All local minima/local maxima.
(d) Intervals on which the function is $\mathrm{CU} / \mathrm{CD}$.
(e) Inflection points.
22. A cylindrical can without a top is made to contain $V \mathrm{~cm}^{3}$ of liquid. Find the dimensions that will minimize the cost of the metal to make the can.
23. Find the derivative of the function $f(x)=\int_{0}^{\sqrt{x}} \frac{t^{2}}{t^{2}+1} d t$
24. Evaluate the integral:
(a) $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$
(b) $\int_{1}^{2} \frac{x^{2}+1}{\sqrt{x}} d x$
(c) $\int_{0}^{\pi / 2}(\cos t+2 \sin t) d t$
25. Find the area under the curve $y=x^{2}+3 x-2$ from 1 to 4 . Use equal subintervals and take x_{i}^{*} to be the right end-point of the i-th interval
26. Express the limit $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}$ as a definite integral. Do not evaluate it.
27. A particle moves in a straight line and has acceleration given by $a(t)=t^{2}-t$. Its initial velocity is $v(0)=2$ cm / s and its initial displacement is $s(0)=1 \mathrm{~cm}$. Find the position function $s(t)$.
28. Find the vector function $\vec{r}(t)$ that gives the position of a particle at time t having the acceleration $\vec{a}(t)=$ $2 t \vec{\imath}+\vec{\jmath}$, initial velocity $\vec{v}(0)=\vec{\imath}-\vec{\jmath}$, and initial position $(1,0)$.
