1. Find $\mathbf{a} \cdot \mathbf{b}$
(a) $|\mathbf{a}|=2,|\mathbf{b}|=5$ and the angle between \mathbf{a} and \mathbf{b} is 150°
(b) $\mathbf{a}=-3 \vec{\imath}+\vec{\jmath}, \mathbf{b}=2 \vec{\imath}+4 \vec{\jmath}$
2. Given the vectors $\mathbf{a}=<1,-3>$ and $\mathbf{b}=<-3,4>$. Find
(a) The scalar and vector projections of \mathbf{a} onto \mathbf{b}
(b) The scalar and vector projections of \mathbf{b} onto \mathbf{a}
3. A boat sails south with the help of a wind blowing in the direction $\mathrm{S} 36^{\circ} \mathrm{E}$ with magnitude 400 lb . Find the work done by the wind as the boat moves 110 ft . (Round your answer to the nearest whole number.)
4. Find, correct to the nearest degree, the angle B of the triangle with the vertices $A(1,0), B(4,5), C(-1,2)$
5. Find a unit vector orthogonal to the vector $\langle-2,4\rangle$.
6. Find the value(s) of x such that the vectors $x \vec{\imath}+3 x \vec{\jmath}$ and $x \vec{\imath}-4 \vec{\jmath}$ are orthogonal.
7. Find the distance from the point $(1,3)$ to the line $2 x-3 y-5=0$.
8. Find the distance between the parallel lines $y=2 x+3$ and $y-2 x=9$.
9. Find a Cartesian equation for the following parametric curves. Sketch the curve.
(a) $x=1-t^{2}, y=1-t,-1 \leq t \leq 1$
(b) $x=1+\sin t, y=2+\cos t$
(c) $x=\tan t, y=\cot ^{2} t, \frac{\pi}{6} \leq t \leq \frac{\pi}{3}$
10. An object is moving in the $x y$-plane and its position after t seconds is $\mathbf{r}(t)=<t^{2}+t, t-4>$. (a) At what time is the object at the point $(12,-1)$.
(b) Does the object pass through the point $(4,8)$?
(c) Find an equation in x and y whose graph is the path of the object.
11. Find a vector equation of the line containing the points $(1,2)$ and $(3,-4)$.
12. Find parametric equations of the line passing through the point $(-1,1)$ and parallel to the vector $\vec{\imath}-5 \vec{\jmath}$.
13. Determine whether the lines $\mathbf{r}(t)=(-4+2 t) \vec{\imath}+(5+t) \vec{\jmath}$ and $\mathbf{r}(t)=(2+3 t) \vec{\imath}+(4-6 t) \vec{\jmath}$ are parallel, perpendicular or neither. If they are not parallel, find their point of intersection.
14. Find all holes and vertical asymptote(s) for the graph of

$$
g(x)=\frac{\left(x^{2}+5 x\right)(x-2)}{(x+1)\left(x^{2}+4 x-5\right)}
$$

and determine the behavior of the function near the vertical asymptotes.
15. For the function g whose graph is given, state the value of the given quantity, if it exists.
(a) $\lim _{x \rightarrow-2^{-}} g(x)$
(b) $\lim _{x \rightarrow-2^{+}} g(x)$
(c) $\lim _{x \rightarrow-2} g(x)$
(d) $g(-2)$
(e) $\lim _{x \rightarrow 0} g(x)$
(f) $g(0)$
(g) $\lim _{x \rightarrow 2^{-}} g(x)$
(h) $\lim _{x \rightarrow 2^{+}} g(x)$
(i) $g(2)$
(j) $\lim _{x \rightarrow 4^{-}} g(x)$
(k) $\lim _{x \rightarrow 4^{+}} g(x)$

(l) $\lim _{x \rightarrow 4} g(x)$

