1. Find the limit.

(a)
$$\lim_{t \to 0} \frac{\sin^2 3t}{t^2}$$

(b)
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$

(c)
$$\lim_{x \to 0} \frac{(\cos x - 1) \sin 3x}{x^2}$$

(d)
$$\lim_{x \to -2} \frac{\tan \pi x}{x + 2}$$

- 2. Differentiate the function.
 - (a) $f(x) = \tan x + x \sec x$ (b) $f(x) = (3x^3 - 2x^2 + 1)^6$ (c) $f(x) = (1 + \cos^2 x)^3$ (d) $f(x) = \cos \sqrt{x}$ (e) $f(x) = \left(\frac{x^4 - 1}{x^4 + 1}\right)^3$ (f) $f(x) = \frac{2x + 1}{\sqrt{x^2 + 3}}$ (g) $f(x) = (x^6 + 4x^5 - 11)^5(2 + x^8)^7$
- 3. Functions f and g satisfy the properties as shown in the table. Find the indicated quantity.

x	f(x)	f'(x)	g(x)	g'(x)
1	-3	3	1	1
2	0	3	-5	10
3	2	5	0	4

(a) h'(1), if h(x) = f(g(x))(b) z'(2) if $z(x) = [f(2x - 1)]^4$

(b)
$$z'(2)$$
, if $z(x) = [f(2x-1)]^4$

- (c) G'(1), if $G(x) = [x^2 g(2x)]^3$
- 4. Find the equation of the tangent line to the curve $y = x\sqrt{1+x^2}$ at the point where x = 1.
- 5. Find $\frac{dy}{dx}$ for the equation $\cos(x-y) = y \sin x$.
- 6. Find $\frac{dx}{dy}$ for the equation $y^4 + x^2y^2 + yx^4 = y + 1$.
- 7. Find the slope of the tangent line to the curve $2(x^2 + y^2)^2 = 25(x^2 y^2)$ at the point (3,1).
- 8. Find a tangent vector of unit length to the curve $\mathbf{r}(t) = \langle t \cos t, t \sin t \rangle$ at the point where $t = \frac{\pi}{4}$.
- 9. Find the vector and parametric equations for the line tangent to the curve $\vec{r}(t) = \langle 1 4t, 2t 3t^2 \rangle$ at the point P(-11, -21).
- 10. The ball is tossed into the air. Its position at time t is given by $\mathbf{r}(t) = \langle 5t, 100t 16t^2 \rangle$.
 - (a) Find the velocity and the speed of the ball when t = 2.

- (b) How high does the ball go?
- (c) With what speed does the ball hit the ground?
- 11. Find the angle of intersection of the curves traced by $\mathbf{r}_1(t) = \langle 1 t, 3 + t^2 \rangle$ and $\mathbf{r}_2(s) = \langle s 2, s^2 \rangle$.