1. Find the limit.
(a) $\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2}}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}$
(c) $\lim _{x \rightarrow 0} \frac{(\cos x-1) \sin 3 x}{x^{2}}$
(d) $\lim _{x \rightarrow-2} \frac{\tan \pi x}{x+2}$
2. Differentiate the function.
(a) $f(x)=\tan x+x \sec x$
(b) $f(x)=\left(3 x^{3}-2 x^{2}+1\right)^{6}$
(c) $f(x)=\left(1+\cos ^{2} x\right)^{3}$
(d) $f(x)=\cos \sqrt{x}$
(e) $f(x)=\left(\frac{x^{4}-1}{x^{4}+1}\right)^{3}$
(f) $f(x)=\frac{2 x+1}{\sqrt{x^{2}+3}}$
(g) $f(x)=\left(x^{6}+4 x^{5}-11\right)^{5}\left(2+x^{8}\right)^{7}$
3. Functions f and g satisfy the properties as shown in the table. Find the indicated quantity.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-3	3	1	1
2	0	3	-5	10
3	2	5	0	4

(a) $h^{\prime}(1)$, if $h(x)=f(g(x))$
(b) $z^{\prime}(2)$, if $z(x)=[f(2 x-1)]^{4}$
(c) $G^{\prime}(1)$, if $G(x)=\left[x^{2}-g(2 x)\right]^{3}$
4. Find the equation of the tangent line to the curve $y=x \sqrt{1+x^{2}}$ at the point where $x=1$.
5. Find $\frac{d y}{d x}$ for the equation $\cos (x-y)=y \sin x$.
6. Find $\frac{d x}{d y}$ for the equation $y^{4}+x^{2} y^{2}+y x^{4}=y+1$.
7. Find the slope of the tangent line to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$.
8. Find a tangent vector of unit length to the curve $\mathbf{r}(t)=<t \cos t, t \sin t>$ at the point where $t=\frac{\pi}{4}$.
9. Find the vector and parametric equations for the line tangent to the curve $\vec{r}(t)=<1-4 t, 2 t-3 t^{2}>$ at the point $P(-11,-21)$.
10. The ball is tossed into the air. Its position at time t is given by $\mathbf{r}(t)=<5 t, 100 t-16 t^{2}>$.
(a) Find the velocity and the speed of the ball when $t=2$.
(b) How high does the ball go?
(c) With what speed does the ball hit the ground?
11. Find the angle of intersection of the curves traced by $\mathbf{r}_{1}(t)=<1-t, 3+t^{2}>$ and $\mathbf{r}_{2}(s)=<s-2, s^{2}>$.

