1. Find $y^{\prime \prime}$ for the function $f(x)=\left(1+x^{2}\right) \tan x$.
2. Find the n-th derivative of the function $f(x)=\frac{1}{1+x}$.
3. Find the 46 -th derivative of the function $\cos \left(\frac{x}{3}\right)$.
4. Find $\frac{d^{2} y}{d x^{2}}$ if $\sqrt{x}+\sqrt{y}=8$.
5. If $\mathbf{r}(t)=<t^{3}, t^{2}>$ represents the position of a particle at time t, find the angle between the velocity and the acceleration vector at time $t=1$.
6. Consider the curve $x=t^{2}-10 t-3, y=5 t^{2}+t$.
(a) Find the equation of the tangent line at the point $(8,4)$.
(b) At what point(s) is the tangent line to the graph parallel to the line $7 x+2 y=19$.
7. Find the point(s) on the curve $x=1-2 \cos t, y=2+3 \sin t$ where the tangent is horizontal or vertical.
8. A balloon is rising at a constant speed of $5 \mathrm{ft} / \mathrm{s}$. A boy is cycling along a straight road at a speed of 15 ft / s. When he passes under the balloon it is 45 ft above him. How fast is the distance between the boy and the balloon increasing 3 s later?
9. A kite 100 ft above the ground moves horizontally at a speed of $8 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the spring and the horizontal decreasing when 200 ft of string have been let out?
10. A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across the top and have a height of 1 ft . If the trough is filled with water at a rate of $12 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 6 inches deep?
11. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If the water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$, how fast is the water level rising when the water is 5 cm deep?
