1. Find the linear and quadratic approximation for the function $f(x)=\sin x$ at $a=\pi / 6$.

$$
\begin{array}{l|l}
f(x)=\sin x & f\left(\frac{\pi}{6}\right)=\sin \frac{\pi}{6}=\frac{1}{2} \\
f^{\prime}(x)=\cos x & f^{\prime}\left(\frac{\pi}{6}\right)=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \\
\hline f^{\prime \prime}(x)=-\sin x & f^{\prime}\left(\frac{\pi}{6}\right)=-\sin \frac{\pi}{6}=-\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
& \quad f(x)=-\sin x \left\lvert\, f\left(\frac{\pi}{6}\right)=-\sin \frac{1 \pi}{6}=-\frac{1}{2}\right. \\
& \text { Linear Approximation: } \quad f(x) \approx \frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right) \\
& \sin x \approx \frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Linear Approximation: } \quad f(x) \approx \frac{1}{2}+\frac{13}{2}\left(x-\frac{\pi}{6}\right) \\
& \text { Quadratic Approximation: } \sin x \approx \frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)-\frac{1}{2 \cdot 2}\left(x-\frac{\pi}{6}\right)^{2} \\
& \\
& \\
& \quad \sin x \approx \frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)-\frac{1}{4}\left(x-\frac{\pi}{6}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \approx f(a)+f^{\prime}(a)(x-a) \text { linear approximation for } \\
& f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \text { Quadratic approxim. }
\end{aligned}
$$

2. Use differentials to approximate $(1.97)^{6}$.

$$
\begin{gathered}
f(a+\Delta x) \approx f(a)+f^{\prime}(a) \Delta x \\
f(x)=x^{6}, \quad a=2, \quad \Delta x=-(2-1.97)=-0.03 \\
f^{\prime}(x)=6 x^{5}, \quad f^{\prime}(2)=6 \cdot 2^{5}=6.32=192 \\
f(2) f^{\prime}(2) f(2)=2^{6}=64 \\
(1.97)^{6} \approx 64+192(-0.03) \\
64-5.76=58.24
\end{gathered}
$$

3. Use differentials to estimate the amount of paint needed to apply a coat of paint .05 cm thick to a hemispherical dome with diameter $50 \mathrm{~m} . \quad \Delta r=0.05 \mathrm{am}=0.0005 \mathrm{~m}, D=50, r=\frac{50}{2}=25 \mathrm{~m}$

$$
V=\frac{1}{2} \cdot \frac{4}{3} \pi r^{3}
$$

$$
V=\frac{2}{3} \pi r^{3}
$$

$$
\begin{aligned}
& V=\frac{2}{3} \pi r^{3} \\
& \text { Find the differential of } V
\end{aligned}
$$

$$
\begin{aligned}
& d V=\left(\frac{2}{3} \pi r^{3}\right)^{\prime} d r \\
& d V=\frac{2}{3} \pi\left(3 r^{2}\right) d r \overbrace{r}^{r} d r \\
& d V=2 \pi r^{2} d r=2 \pi(25)^{2}(0.0005)=1.625 \pi m^{3}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty}\left(\frac{3}{\pi}\right)^{x}=0$

$$
\frac{3}{\pi}=\frac{3}{3.14 \ldots}<1
$$

(c) $\lim _{x \rightarrow-\infty}\left(\frac{3}{\pi}\right)^{x}=\infty$

(e) $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{7}\right)^{\frac{x}{3-x}}=\lim _{t \rightarrow \infty}\left(\frac{1}{7}\right)^{t}=0$, since $\frac{1}{7}<1$
jub.

$$
\begin{aligned}
& t=\frac{x}{3-x} \\
& \lim _{x \rightarrow 3^{-}} \frac{x}{3-x}=\infty \\
& (x<3) \\
& \lim _{x \rightarrow 3^{+}}\left(\frac{1}{7}\right)^{\frac{x}{3-x}}=\lim _{t \rightarrow-\infty}\left(\frac{1}{7}\right)^{t}=\infty \\
& \lim _{x \rightarrow 3^{+}} \frac{x}{3-x}=-\infty
\end{aligned}
$$

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=1, \lim _{x \rightarrow 0} \cos x=1, \lim _{x \rightarrow 0} \sin x=0, \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$
(g) $\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2} \cos 5 t}=\lim _{t \rightarrow 0}\left(\frac{\sin 3 t}{t}\right)^{2} \cdot \lim _{t \rightarrow 0} \frac{\left.\right|^{1}}{\cos 5 t}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0}\left(\frac{\sin 3 t}{t}\right)^{2}=\lim _{t \rightarrow 0} 3^{2}\left(\frac{\sin 3 t}{3 t}\right)^{2}=3^{2}=9 \\
& =\lim _{t \rightarrow 0}\left(\frac{3}{3} 5 t\right.
\end{aligned}
$$

(i) $\lim _{x \rightarrow-2} \frac{\tan \pi x}{x+2}$

$$
\begin{aligned}
& t=x+2, \quad x=t-2 \\
& \lim _{x \rightarrow-2} t=\lim _{x \rightarrow-2}(x+2)=0 \\
& \left.=\lim _{t \rightarrow 0} \frac{\tan \pi(t-2)}{t}=\lim _{t \rightarrow 0} \frac{\tan [\pi t-2 \pi]}{t}=\lim _{t \rightarrow 0} \frac{\pi \tan \pi^{2} t}{\pi t}=\pi\right]
\end{aligned}
$$

$\left(e^{x}\right)^{\prime}=e^{x} \quad\left(e^{u(x)}\right)^{\prime}=u(x) e^{u(x)}$
5. Find an equation of the tangent line to the curve $2 e^{x y}=x+y$ at the point $(0,2)$.

$$
\begin{aligned}
& 2 d\left(e^{x y}\right)=\frac{d}{d x}(x+y) \text { Product Rule } \\
& 2 e^{x y} \frac{d}{d x}(x y)=1+y^{\prime} \\
& 2 e^{x y}\left(y+x y^{\prime}\right)=1+y^{\prime} \\
& 2 y e^{x y}+2 x e^{x y} y^{\prime}=1+\left(y^{\prime}\right. \\
& 2 x e^{x y} y^{\prime}-y^{\prime}=1-2 y e^{x y} \\
& y^{\prime}\left(2 x e^{x y}-1\right)=1-2 y e^{x y} \\
& y^{\prime}=\frac{1-2 y e^{x y}}{2 x e^{x y}-1}, y^{\prime}(0,2)=\frac{1-2 \cdot 2 \cdot e^{0 \cdot 2}}{2 \cdot 0 \cdot e^{0 \cdot 2}-1} \\
& \quad=\frac{1-4}{-1}=\frac{-3}{-1}=3
\end{aligned}
$$

Tangent line: $\begin{array}{r}y=\frac{3(x-0)+2}{} y=3 x+2\end{array}$
6. Find the values of a and b that make the function

$$
f(x)=\left\{\begin{array}{ll}
a x^{2}+x+1, & \text { if } x \leq 1 \\
b x-1, & \text { if } x>1
\end{array}, \quad f^{\prime}(x)=\left\{\begin{array}{cc}
2 a x+1, & \text { if } x \leq 1 \\
b, & \text { if } x>1
\end{array}\right.\right.
$$

differentiable everywhere. Find $f^{\prime}(x)$.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \quad(f(x)$ should be continuous everywhere)

$$
\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} f^{\prime}(x) \quad\left[f^{\prime}(x) \text { should be continuous for all } x\right]
$$

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
x \rightarrow 1^{-} \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}\left(a x^{2}+x+1\right)=a+1+1=a+2 \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}(b x-1)=b-1
\end{array}\right\} \Rightarrow a+2=b-1 \\
\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=2 a+1 \\
\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=b
\end{array}\right\} \quad b=2 a+1 . \begin{aligned}
& a+2=(2 a+1)-1 \\
& a+2=2 a \Rightarrow a=2 \\
& a+2=b-1 \Rightarrow 2 a+1
\end{aligned} \Rightarrow \begin{aligned}
& a=2(2)+1=5=b
\end{aligned}
$$

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
4 x+1, & \text { if } x \leq 1 \\
5, & \text { if } x>1
\end{array}\right.
$$

7. If $f(x)=\sin (g(x))$, find $f^{\prime}(2)$ given that $g(2)=\frac{\pi}{3}$ and $g^{\prime}(2)=\frac{\pi}{4}$.

$$
\begin{aligned}
f^{\prime}(x)=(\sin g(x))^{\prime} & =\cos (g(x)) \cdot g^{\prime}(x) \\
f^{\prime}(2) & =\cos (g(2)) \cdot g^{\prime}(2) \\
& =\cos \frac{\pi}{3} \cdot \frac{\pi}{4} \\
& =\frac{1}{2} \cdot \frac{\pi}{4}=\frac{\pi}{8}
\end{aligned}
$$

8. At what point on the curve $f(x)=36 \sqrt{x}$ is the tangent line parallel to the line $9 x-y+2=0$?

$$
y=9 x+2 \text {, slope } m=9
$$

$$
\begin{aligned}
& \text { Find } x \text { much that } f^{\prime}(x)=9 \\
& f^{\prime}(x)=36\left(\frac{1}{2}\right) x^{-1 / 2}=\frac{18}{\sqrt{x}}=9 \\
& \frac{2}{\sqrt{x}}=1 \text { or } \frac{\sqrt{x}=2}{x=4}
\end{aligned}
$$

9. An object is moving along a straight path. The position of the object at time t is given by $s(t)=$ $2 t^{3}-9 t^{2}+12 t+1$, where t is measured in seconds and $s(t)$ is measured in feet. Find the total distance traveled in the first 2 seconds.

$$
\begin{aligned}
& r(t)=6 t^{2}-18 t+12>0 \\
& (t-1)(t-2)>0 \\
& t=3 \quad(3-1)(3-2)>0 \\
& t=1.5 \quad(1.5-1)(1.5-2)<0 \\
& t=0.5 \quad(0.5-1)(0.5-2)>0 \\
& v(t)>0 \text { on }[0,1) \text { distance traveled. } \\
& v(t)<0 \text { on }[1,2] \\
& \text { total distance }=\left\lvert\, \frac{s(1)-s(0)|+|s(2)-s(1)|}{\substack{\text { Siftance } \\
\text { traveled }}}\right. \\
& \begin{array}{l}
\text { traveled } \\
\text { When } V(t)>0
\end{array} \\
& \begin{aligned}
&|\overbrace{2-9+12+\mid}^{s(1)}-\overbrace{1}^{s(0)}+| 2(2)^{3}-9\left(2^{2}\right)+12(2)+/ \\
&=(2-9+12+1) \\
& 5(1)
\end{aligned} \\
& =5+|8-36+24-5|=5+|-9|=5+2=14
\end{aligned}
$$

10. Find the derivative

(a) $f(x)=x^{2} \cot (3 x) \quad$ Product tulle

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{2}\right)^{\prime} \cot (3 x)+x^{2}(\cot (3 x))^{\prime} \\
& =2 x \cot (3 x)+x^{2}\left(-\operatorname{ses}^{2}(3 x)\right)(3 x)^{\prime} \\
& =2 x \cot (3 x)-x^{2} \operatorname{cxc}^{2}(3 x)(3)
\end{aligned}
$$

(b) $f(x)=\frac{e^{\sqrt{x}}}{x+\sqrt{x}} \quad$ Quotient Rule

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(e^{\sqrt{x}}\right)^{\prime}(x+\sqrt{x})}{(x+\sqrt{x})^{2}}-e^{\sqrt{x}}(x+\sqrt{x})^{\prime} \\
&=\frac{e^{\sqrt{x}}(\sqrt{x})^{\prime}(x+\sqrt{x})-e^{\sqrt{x}}\left(1+\frac{1}{2} x^{-1 / 2}\right)}{(x+\sqrt{x})^{2}} \\
&=\frac{\frac{1}{2} e^{\sqrt{x}} x^{-1 / 2} x+\frac{1}{2} e^{\sqrt{x}} x^{-1 / 2} \sqrt{x}-e^{\sqrt{x}}-\frac{1}{2} e^{\sqrt{x}} x^{-1 / 2}}{(x+\sqrt{x})^{2}} \\
&=\frac{\frac{1}{2} e^{\sqrt{x}} x^{1 / 2}+\frac{1}{2} e^{\sqrt{x}}-e^{\sqrt{x}}-\frac{1}{2} e^{\sqrt{x}} x^{-1 / 2} x^{-1 / 2}}{(x+\sqrt{x})^{2}} \\
&=\frac{e^{\sqrt{x}} x^{1 / 2}-e^{\sqrt{x}}-e^{\sqrt{x}} x^{-1 / 2}}{2(x+\sqrt{x})^{2}}=\frac{e^{\sqrt{x}}\left(x^{1 / 2}-1-x^{-1 / 2}\right)}{2(x+\sqrt{x})^{2}}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& f(x)=\tan ^{3}\left(e^{-x}+e x-x^{e}\right) \\
& f^{\prime}(x)=3 \tan ^{2}\left(e^{-x}+e x-x^{e}\right)\left(\tan \left(e^{-x}+e x-x^{e}\right)\right)^{\prime} \\
&=3 \tan ^{2}\left(e^{-x}+e x-x^{e}\right) \sec ^{2}\left(e^{-x}+e x-x^{e}\right)\left(e^{-x}+e x-x^{e}\right)^{\prime} \\
&=3 \tan ^{2}\left(e^{-x}+e x-x^{e}\right) \sec ^{2}\left(e^{-x}+e x-x^{e}\right)\left(e^{-x}(-x)^{\prime}+e-e\right. \\
&=\operatorname{stan}^{2}\left(e^{-x}+e x-x^{e}\right) \sec ^{2}\left(e^{-x}+e x-x^{e}\right)\left(e^{-x}+e-e x^{e-1}\right.
\end{aligned}
$$

(d) $f(x)=\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{5 / 2}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{5}{2}\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{3 / 2}\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{\prime} \\
& =\frac{5}{2}\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{3 / 2} \frac{\left(3 x^{2}+3\right)\left(x^{2}-4 x+1\right)-(2 x-4)\left(x^{3}+3 x\right)}{\left(x^{2}-4 x+1\right)^{2}}
\end{aligned}
$$

11. Find $f^{(58)}(x)$ if $f(x)=e^{-2 x}+\cos (3 x)$.
$f^{\prime}(x)=-2 e^{-2 x}-3 \sin (3 x)$
$f^{\prime \prime}(x)=4 e^{-2 x}-9 \cos (3 x)$
$f^{\prime \prime \prime}(x)=-8 e^{-2 x}+27 \sin (3 x)$
$f^{\prime \prime}(x)=16 e^{-2 x}+81 \cos (3 x)$

$$
\begin{aligned}
f^{(58)}(x) & =(-2)^{58} e^{-2 x}-3^{58} \cos (3 x) \\
& =2^{58} e^{-2 x}-3^{58} \cos (3 x)
\end{aligned}
$$

12. The vector function $r(t)=<t+e^{4 t},-t \cos (2 t)>, 0 \leq t \leq 2 \pi$, represents the position of a particle at time
t. Find the velocity acceleration vectors of the object at $t=\frac{\pi}{4}$.
and

$$
\begin{aligned}
& =\left\langle 1+4 e^{4},-\cos (2 t),-\cos (2 t)+t \sin (2 t)(2)\right\rangle \\
& =\left\langle 1+4 e^{4 t},-2 x^{*}\right)^{\prime}
\end{aligned}
$$

$$
\vec{V}\left(\frac{\pi}{4}\right)=\left\langle 1+4 e^{4 \cdot \frac{\pi}{4}},-\cos \left(2 \cdot \frac{\pi}{4}\right)+2 \cdot \frac{\pi}{4} \cdot \sin \left(\frac{\pi}{4}\right)^{\prime}\right\rangle
$$

$$
\vec{V}\left(\frac{\pi}{4}\right)=\left\langle 1+4 e^{\pi}, \frac{\pi}{2}\right\rangle
$$

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\left\langle 4\left(4 e^{4 t}\right),-\sin (2 t)(2 t)^{\prime}+2 \sin (2 t)+2 t \cos (2 t)(2 t)^{\prime}\right\rangle
$$

$$
\begin{aligned}
& =\left\langle 4\left(4 e^{4 t},-2 \sin (2 t)+2 \sin (2 t)+4 t \cos (2 t)\right\rangle\right. \\
& =\left\langle 16 e^{2},-2+\right)
\end{aligned}
$$

$$
=\left\langle 16 e^{4 t}, 4 t \cos (2 t)\right\rangle
$$

$$
\begin{gathered}
\left.\vec{a}\left(\frac{\pi}{4}\right)=\left\langle 16 e^{4 \cdot \frac{\pi}{4}}, 4 \frac{\pi}{4} \cos / 2 \cdot \frac{\pi}{4}\right)\right\rangle \\
\vec{a}\left(\frac{\pi}{4}\right)=\left\langle 16 e^{\pi}, 0\right\rangle
\end{gathered}
$$

13. At what points) does the curve parametrized by $x=t^{2}-6 t+5, y=t^{2}+4 t+3$ have a horizontal or vertical tangent?

$$
\begin{aligned}
& \text { horizontal tangent: } \begin{aligned}
y^{\prime}(t) & =0 \\
y^{\prime}(t) & =2 t+4=0 \Rightarrow t=-2 \left\lvert\, \begin{array}{l}
x(2)=(-2)^{2}-6(-2)+5 \\
\\
=4+12+5=21 \\
y(2)=(-2)^{2}+4(-2)+3
\end{array}\right.
\end{aligned} \\
& \begin{aligned}
& \text { H.T.@(21,-1) }=4-8+3=-1 \\
& \text { vertical tangent: } \begin{array}{l}
x^{\prime}(t)=0 \\
x^{\prime}(t)=2 t-6
\end{array} \\
& \text { V.T.@(-4,24) }
\end{aligned} \quad \begin{array}{l}
x(3)=0, t=3 \quad \begin{array}{l}
x(3)=9+12+3=-4 \\
y(3)
\end{array}
\end{array}
\end{aligned}
$$

14. Water is leaking out of an inverted conical tank at a rate of $1 \mathrm{~m}^{3} / \mathrm{min}$. The tank has height 6 m and the diameter at the top is 4 m . At what rate is the water level changing when the height of the water is 3 m ?

$$
\begin{aligned}
& V \text { is the volume of the water in the tank } \\
& \frac{d v}{d t}=-1\left(\mathrm{~m}^{3} / \mathrm{min}\right)
\end{aligned}
$$

6

h is the height of the water $\quad r$ is the radius of the cone at height h. $V=\frac{1}{3} \pi r^{2} h$

6

$$
\begin{aligned}
\frac{b}{2}=\frac{h}{r} \Rightarrow r & =\frac{h}{3} \\
V & =\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} h \\
\frac{d}{d t} V & \left.=\frac{\pi}{27} \frac{d}{d} h^{3}\right) \\
\frac{d V}{d t} & =\frac{\pi}{27}\left(3 h^{2}\right) \frac{d h}{d t} \\
\frac{d h}{d t} & =\frac{9}{\pi h^{2}} \frac{d V}{d t} \\
& =\frac{9}{\pi\left(3^{2}\right)}(-1)=-\frac{1}{\pi} \mathrm{~m} / \text { nih }
\end{aligned}
$$

15. A man starts walking north at $4 \mathrm{ft} / \mathrm{s}$ from a point P. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of P. At what rate are the people moving apart 15 min after woman starts walking.

16. A trapezoid has a base with length 10 inches. The length of the top of the trapezoid is decreasing at a rate of $1 \mathrm{in} / \mathrm{min}$ while the height of the trapezoid is increasing at a rate of $2 \mathrm{in} / \mathrm{min}$. At what rate is the area of the trapezoid changing when the height is 3 inches and the area of the trapezoid is $24 \mathrm{in}^{2}$?

10

$$
\begin{gathered}
24=A=\frac{1}{2}(x+10)(3) \\
48=3(x+10) \\
16=x+10 \\
x=6
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=-1, \quad \frac{d h}{d t}=2 \\
& \text { Find } \frac{d A}{d t} \text { if } \quad h=3, \quad t=24
\end{aligned}
$$

$$
t=\frac{1}{2}(x+10) h=\frac{1}{2} x h+5 h
$$

$$
\frac{d t}{d t}=\frac{1}{2}\left(\frac{d x}{d t} h+\frac{d h}{d t} x\right)+5 \frac{d h}{d t}
$$

$$
\begin{aligned}
\frac{d t}{d t} & =\frac{1}{2}((-1)(3)+2(6))+5(2) \\
& =10+\frac{9}{2}=\frac{29}{2} \mathrm{in}^{2} / \mathrm{min}
\end{aligned}
$$

