1. Find the linear and quadratic approximation for the function $f(x)=\sin x$ at $a=\pi / 6$.
2. Use differentials to approximate $(1.97)^{6}$.
3. Use differentials to estimate the amount of paint needed to apply a coat of paint .05 cm thick to a hemispherical dome with diameter 50 m .
4. Find the limit
(a) $\lim _{x \rightarrow-\infty} \pi^{x}$
(b) $\lim _{x \rightarrow \infty}\left(\frac{3}{\pi}\right)^{x}$
(c) $\lim _{x \rightarrow-\infty}\left(\frac{3}{\pi}\right)^{x}$
(d) $\lim _{x \rightarrow \infty} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}$
(e) $\lim _{x \rightarrow 3^{-}}\left(\frac{1}{7}\right)^{\frac{x}{3-x}}$
(f) $\lim _{\substack{\pi \\ x \rightarrow \frac{\pi}{2}}} \frac{2}{1+e^{\tan x}}$
(g) $\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t}{t^{2} \cos 5 t}$
(h) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{\tan 5 x}$
(i) $\lim _{x \rightarrow-2} \frac{\tan \pi x}{x+2}$
5. Find an equation of the tangent line to the curve $2 e^{x y}=x+y$ at the point $(0,2)$.
6. Find the values of $a$ and $b$ that make the function

$$
f(x)= \begin{cases}a x^{2}+x+1, & \text { if } x \leq 1 \\ b x-1, & \text { if } x>1\end{cases}
$$

differentiable everywhere. Find $f^{\prime}(x)$.
7. If $f(x)=\sin (g(x))$, find $f^{\prime}(2)$ given that $g(2)=\frac{\pi}{3}$ and $g^{\prime}(2)=\frac{\pi}{4}$.
8. At what point on the curve $f(x)=36 \sqrt{x}$ is the tangent line parallel to the line $9 x-y+2=0$ ?
9. An object is moving along a straight path. The position of the object at time $t$ is given by $s(t)=$ $2 t^{3}-9 t^{2}+12 t+1$, where $t$ is measured in seconds and $s(t)$ is measured in feet. Find the total distance traveled in the first 2 seconds.
10. Find the derivative
(a) $f(x)=x^{2} \cot (3 x)$
(b) $f(x)=\frac{e^{\sqrt{x}}}{x+\sqrt{x}}$
(c) $f(x)=\tan ^{3}\left(e^{-x}+e x-x^{e}\right)$
(d) $f(x)=\left(\frac{x^{3}+3 x}{x^{2}-4 x+1}\right)^{5 / 2}$
11. Find $f^{(58)}(x)$ if $f(x)=e^{-2 x}+\cos (3 x)$.
12. The vector function $\mathbf{r}(t)=<t+e^{4 t},-t \cos (2 t)>, 0 \leq t \leq 2 \pi$, represents the position of a particle at time $t$. Find the velocity acceleration vectors of the object at $t=\frac{\pi}{4}$.
13. At what point(s) does the curve parametrized by $x=t^{2}-6 t+5, y=t^{2}+4 t+3$ have a horizontal or vertical tangent?
14. Water is leaking out of an inverted conical tank at a rate of $1 \mathrm{~m}^{3} / \mathrm{min}$. The tank has height 6 m and the diameter at the top is 4 m . At what rate is the water level changing when the height of the water is 3 m ?
15. A man starts walking north at $4 \mathrm{ft} / \mathrm{s}$ from a point $P$. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of $P$. At what rate are the people moving apart 15 min after woman starts walking.
16. A trapezoid has a base with length 10 inches. The length of the top of the trapezoid is decreasing at a rate of $1 \mathrm{in} / \mathrm{min}$ while the height of the trapezoid is increasing at a rate of $2 \mathrm{in} / \mathrm{min}$. At what rate is the area of the trapezoid changing when the height is 3 inches and the area of the trapezoid is $24 \mathrm{in}^{2}$ ?

