1. Show that the function is one-to-one and find the inverse.
(a) $f(x)=\frac{1+3 x}{5-2 x}$
(b) $g(x)=\sqrt{2+5 x}$
2. Find $g^{\prime}(a)$, where g is the inverse function of the given function.
(a) $f(x)=x+x^{2}+e^{x}$ at $a=1$.
(b) $f(x)=3+x^{2}+\tan \left(\frac{\pi x}{2}\right),-1<x<1$ at $a=3$.
3. Evaluate the following.
(a) $\log _{3} 3^{\sqrt{5}}+\log .0001+\ln e^{4}$
(b) $2^{\log _{2} 3+\log _{2} 5}$
4. Express the given quantity as a single logarithm.
(a) $\log _{2} x+5 \log _{2}(x+1)+\frac{1}{2} \log _{2}(x-1)$
(b) $\frac{1}{3} \ln x-4 \ln (2 x+3)$
5. Find the domain of the function $f(x)=\sqrt{x} \ln \left(x^{2}-1\right)$.
6. Find the limit.
(a) $\lim _{x \rightarrow-2^{+}} \log _{2}\left(\frac{x-3}{x+2}\right)$
(b) $\lim _{x \rightarrow \infty} \ln \frac{4}{x+2}$
(c) $\lim _{x \rightarrow \infty}[\ln (x+2)-\ln (1+x)]$
7. Solve the equation for x.
(a) $2^{x-5}=8$
(b) $3^{3 x-4}=2$
(c) $\log _{2} x=3$
(d) $\ln (x+6)+\ln (x-3)=\ln 5+\ln 2$
(e) $2^{3^{x}}=5$
8. Find the inverse function.
(a) $y=\ln (x+3)$
(b) $y=2^{10^{x}}$
(c) $y=\frac{1+e^{x}}{1-e^{x}}$
9. Find the derivative.
(a) $f(x)=\log \left(x^{2}-x\right)$
(b) $f(x)=3^{\sin x}$
(c) $f(x)=x \sqrt{\ln x}$
(d) $f(x)=\ln (\ln (3 x+1))$
(e) $f(x)=\ln \left|\frac{x^{2}-4}{2 x+5}\right|$
(f) $f(x)=(\cos x)^{\sin x}$
(g) $f(x)=\frac{\sqrt{x+1}\left(2-x^{4}\right)^{5}}{(x+3)^{7}\left(x^{3}-2 x+1\right)^{10}}$
10. A bacteria culture starts with 1000 bacteria and the growth rate is proportional to the number of bacteria. After 2 h the population is 9000 .
(a) Find an expression for the number of bacteria after t hours.
(b) Find the number of bacteria after 3 h .
(c) In what period of time does the number of bacteria double?
11. An isotope of strontium, Sr^{90}, has a half-life of 25 years.
(a) Find the mass of Sr^{90} that remains from a sample of 18 mg after t years.
(b) How long will it take for the mass to decay to 2 mg ?
12. A cup of coffee has a temperature of $200^{\circ} \mathrm{F}$ and is in a room that has a temperature of $70^{\circ} \mathrm{F}$. After 10 min the temperature of the coffee is $150^{\circ} \mathrm{F}$.
(a) What is the temperature of the coffee after 15 min ?
(b) When will the coffee have cooled to $100^{\circ} \mathrm{F}$?
