Math 151/171

1. Find the exact value of the expression.
(a) $\arcsin \frac{\sqrt{3}}{2}=y=\frac{\pi}{3}$ means that $\sin y=\frac{\sqrt{3}}{2},-\frac{\pi z}{2} y \leq \frac{\pi}{2}$

(c) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}$
(d) $\tan ^{-1} \sqrt{3}=\pi / 3$
(e) $\sin (\underbrace{\cos ^{-1}\left(-\frac{3}{5}\right)}_{x})=\begin{aligned} & \sin x \\ & x=\cos ^{-1}\left(-\frac{3}{5}\right)\end{aligned}$

$$
\cos x=-\frac{3}{5}
$$

$$
\underbrace{-1 \leq y \leq 1}_{\frac{\pi}{2} \leq x \leq \pi} \begin{array}{c}
\sqrt{25-9}=4 \\
0 \leq \cos ^{-1}(y) \leq \pi=\frac{4}{5}
\end{array} \text { (2nd quadrant, } \sin >0)
$$

Domain for $\sin ^{-1} x$ is $[-1,1], 3$ is not in the domain
(f) $\sin (\arcsin 3) \quad D N E$
$\begin{aligned} \text { (g) } \cos ^{-1}\left(\cos \frac{4 \pi}{3}\right) & =\cos ^{-1}\left(-\frac{1}{2}\right)=\pi-\cos ^{-1}\left(\frac{1}{2}\right)=\frac{2 \pi}{3} \text { y } \\ \cos \frac{4 \pi}{3} & =\cos \left(\pi+\frac{\pi}{3}\right)\end{aligned}=-\cos \frac{\pi}{3}=-\frac{1}{2} \rightarrow x$
(h) $\tan ^{-1}\left(\tan \frac{5 \pi}{4}\right)=\tan ^{-1}(1)=\frac{\pi}{4}$

$$
\pi<\frac{5 \pi}{4}<\frac{3 \pi}{2}
$$

(i) $\sin ^{-1}\left(\sin \frac{11 \pi}{6}\right)=-\frac{\pi}{6}$

(j) $\sin \left(2 \cos ^{-1} \frac{1}{3}\right)=\sin 2 x=2 \sin x \cos x=2 \cdot \frac{2 \sqrt{2}}{3} \cdot \frac{1}{3}=\frac{4 \sqrt{2}}{9}$

$$
\begin{aligned}
\cos ^{-1} \frac{1}{3} & =x \\
\cos x & =\frac{1}{3} \\
\sin x & =\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{9-1}=\sqrt{8} \\
=2 \sqrt{2} \\
1
\end{gathered}
$$

2. Simplify each expression.
(a) $\tan (\underbrace{\sin ^{-1} x}_{y})=\tan y=\frac{x}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
y= & \sin ^{-1} x \\
& x=\sin
\end{aligned}
$$

(b) $\begin{aligned} \cos (\underbrace{\tan ^{-1} x}_{y}) & =\cos y=\frac{1}{\sqrt{x^{2}+1}} \\ y & =\tan ^{-1} x \\ x & =\tan y\end{aligned}$

3. Find the limit.
(a) $\lim _{x \rightarrow \infty} \sin ^{-1}\left(\frac{x^{2}-1}{2 x^{2}+4}\right)=\sin ^{-1}\left(\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+4}\right)=\sin ^{-1}\left(\lim _{x \rightarrow \infty} \frac{x^{2}\left(1-\frac{\pi}{x}\right)}{x^{2}\left(2+4 x^{2}\right)_{0}}\right)=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
(b) $\lim _{x \rightarrow \infty} \tan ^{-1}\left(\frac{x^{2}}{2-x}\right)=\tan ^{-1}\left(\lim _{x \rightarrow \infty} \frac{x^{2}}{2-x}\right)=\lim _{y \rightarrow-\infty} \tan ^{-1} y=-\frac{\pi}{2}$

4. Find the domain of the function $f(x)=\arccos (3 x+2)$.

$$
\begin{aligned}
& -1 \leq 3 x+2 \leq 1 \\
& -1-2 \leq 3 x \leq 1-2 \\
& -\frac{3}{3} \leq \frac{3 x}{3} \leq \frac{-1}{3}
\end{aligned}
$$

$-1 \leq x \leq-\frac{1}{3}$

$$
\left.\left.\left[(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\right](\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\right],(\arctan x)^{\prime}=\frac{1}{1+x^{2}}\right],(\operatorname{arccot} x)=-\frac{1}{1+x^{2}}
$$

5. Find the derivative.
(a) $y=\tan ^{-1}(2 x+1)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{1+(2 x+1)^{2}}(2 x+1)^{\prime} \\
& =\frac{2}{1+(2 x+1)^{2}}
\end{aligned}
$$

(b) $y=\sqrt{x} \sin ^{-1}\left(x^{3}\right)$

$$
\begin{aligned}
y & =\sqrt{x} \sin ^{-1}\left(x^{3}\right) \\
y^{\prime} & =\frac{1}{2} x^{-1 / 2} \sin ^{-1}\left(x^{3}\right)+x^{1 / 2} \frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}}\left(x^{3}\right)^{\prime} \\
& =\frac{1}{2} x^{-1 / 2} \sin ^{-1}\left(x^{3}\right)+\frac{x^{1 / 2}\left(3 x^{2}\right)}{\sqrt{1-x^{6}}}=\frac{1}{2} x^{-1 / 2} \sin ^{-1}\left(x^{3}\right)+\frac{3 x^{5 / 2}}{\sqrt{1-x^{6}}}
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
y & =\left(\cos ^{-1}(4-2 x)\right)^{5} \\
y^{\prime}= & 5\left(\cos ^{-1}(4-2 x)\right)^{4}\left[\cos ^{-1}(4-2 x)\right]^{\prime}=5\left(\cos ^{-1}(4-2 x)\right)^{4} \cdot\left(-\frac{1}{\sqrt{1-(4-2 x)^{2}}}(4-2 x)^{\prime}\right) \\
& =5\left[\cos ^{-1}(4-2 x)\right]^{4} \cdot\left(+\frac{1}{\sqrt{1-(4-2 x)^{2}}}(1-2)\right) \\
& =\frac{10\left[\cos ^{-1}(4-2 x)\right]^{4}}{\sqrt{1-(4-2 x)^{2}}}
\end{aligned}
$$

$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\left\lvert\, \frac{0}{0}\right.$ or $\frac{\infty}{\infty} \left\lvert\,=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right.$
6. Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{x-1}=\left|\frac{\infty}{\infty}\right|=\sqrt{\lim _{x \rightarrow \infty}} \frac{(2) \ln x \frac{1}{x}}{1}=2 \lim _{x \rightarrow \infty} \frac{\ln x}{x}=\left|\frac{\infty}{\infty}\right|$

$$
=2 \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=2 \lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

(b) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}\left|\frac{0}{0} /=\lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}}=/ \frac{0}{0} /=\lim _{x \rightarrow 0} \frac{-\sin x}{6 x}=\right| \frac{0}{0} /=\lim _{x \rightarrow 0} \frac{-\cos x}{6}=-\frac{1}{6}$
$\lim _{x \rightarrow a} f(x) g(x)=\left\lvert\, 0 . \infty /=\lim _{x \rightarrow a} \frac{f(x)}{\lg g(x)}=\lim _{x \rightarrow a} \frac{g(x)}{\frac{1}{f(x)}}\right.$ (convert the product into the guotient)
(c)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{2} \ln x= & \lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}\left|\frac{\infty}{\infty}\right| \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-2}{x^{3}}}=\lim _{x \rightarrow 0^{+}}\left(\frac{x^{3}}{-2} \cdot \frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}}\left(-\frac{x^{2}}{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { indeterminate ppduct } \\
& \lim _{x \rightarrow a}[f(x)]^{g(x)}=\left|\infty^{0}, 0^{\infty},|\infty|=\lim _{x \rightarrow a} e^{g(x) \ln f(x)}=e^{\lim _{x \rightarrow a} g(x) \ln f(x)}\right. \\
& \text { (d) } \lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}|\infty 0| \\
& =\lim _{x \rightarrow \infty} e^{\frac{1}{x} \ln \left(e^{x}+x\right)}=e^{\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x}}=e^{\prime}=e \\
& \left.\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x}\left|\frac{\infty}{\infty}\right|=\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}+x}\left(e^{x}+x\right)^{\prime}}{1}=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x} \right\rvert\, \frac{\infty}{\infty} / \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1}\left|\frac{\infty}{\infty}\right|=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=1
\end{aligned}
$$

(e) $\lim _{x \rightarrow 0}(\sin x)^{\tan x}=\lim _{x \rightarrow 0} e^{\tan x(\ln \sin x)}=e^{\lim _{x \rightarrow 0} \tan x(\ln \sin x)}=e^{0}=1$

$$
\begin{gathered}
\lim _{x \rightarrow 0} \tan x(\ln \sin x)=|0 \cdot \infty|=\lim _{x \rightarrow 0} \frac{\ln \sin x}{\cot x}\left|\frac{\infty}{\infty}\right| \\
=\lim _{x \rightarrow 0} \frac{\frac{1}{\sin x}(\cos x)}{-\csc ^{2} x} \equiv \lim _{x \rightarrow 0} \frac{\cos x\left(-\sin ^{2} x\right)}{\sin x} \\
=(\cos 0)(-\sin 0)=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { convert into the quobient } \\
& \text { (1) } \begin{array}{l}
\left.\ln \left(\frac{1}{\ln (1)-} \frac{1}{x-1}\right)|\infty-\infty|=\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1) \ln x} \right\rvert\, \frac{0}{0} / \\
=\lim _{x \rightarrow 1} \frac{\left(1-\frac{1}{x}\right) x}{\left(\ln x+\frac{x-1}{x}\right) x}=\lim _{x \rightarrow 1} \frac{x-1}{x \ln x+x-1}\left|\frac{0}{0}\right|=\lim _{x \rightarrow 1} \frac{1}{\ln x+x-\frac{1}{x}+1} \\
=\lim _{x \rightarrow 1} \frac{1}{\ln x+2}=\frac{1}{x+2+2}=\frac{1}{2}
\end{array}
\end{aligned}
$$

7. The graph of the derivative, $f^{\prime}(x)$, is shown below. Use the graph to answer these questions.
(a) On what intervals is f increasing? decreasing?
(b) On what intervals is f concave up? concave down?
(c) At what values of x does f have a local maximum or minimum?
(d) At what values of x does f have an inflection point?

8. Find all absolute and local extrema for the following functions by graphing.
(a) $f(x)=x^{2}-3,-1 \leq x \leq 2$.

$$
\begin{aligned}
& f(-1)=-2 \\
& f(0)=-3 \\
& f(2)=1
\end{aligned}
$$

(b) $f(x)= \begin{cases}x^{2}, & \text { if }-1 \leq x<0 \\ 2-x^{2}, & \text { if } 0 \leq x \leq 1\end{cases}$

-3 is the absolute min
1 is the absolute max

2 is the absolute max
no absolute min value the function is not defined at zero.
c is a critical umber if $f / c)=0$ or $f / c) D N E$.
9. Find all critical numbers for the following functions.
(a) $f(x)=\sqrt[3]{x}(x-1)^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}(x-1)^{2}+x^{1 / 3} 2(x-1) \\
&=(x-1)\left[\frac{x-1}{3 x^{2 / 3}}+2 x^{1 / 3}\right]=(x-1) \frac{x-1+2 x^{1 / 3}\left(3 x^{2 / 3}\right)}{3 x^{2 / 3}} \\
&=\frac{(x-1)(x-1+6 x)}{3 x^{2 / 3}}=\frac{(x-1)(7 x-1)}{3 x^{2 / 3}}=0 \\
& x=1, x=1 / 7, x=0
\end{aligned}
$$

(b) $f(x)=\left|x^{2}-5 x\right|= \begin{cases}x^{2}-5 x, & x \leq 0 \text { or } x \geq 5 \\ -\left(x^{2}-5 x\right), & 0<x<5\end{cases}$

(c) $f(x)=x e^{-2 x}$

$$
\begin{aligned}
f^{\prime}(x) & =e^{-2 x}+x(-2) e^{-2 x} \\
& =e^{-2 x}(1-2 x)=0 \\
1-2 x & =0 \text { or } x=\frac{1}{2}
\end{aligned}
$$

10. Find the absolute maximum and absolute minimum of the given function on the given interval.
(a) $f(x)=x^{3}-12 x+1,[-3,5]$

Critical numbers.

$$
\begin{aligned}
f^{\prime}(x)= & \frac{3 x^{2}-12}{3}=\frac{0}{3} \\
& x^{2}-4=0 \\
& x^{2}=4 \text { or } x= \pm 2 \\
f(-3)= & (-3)^{3}-12(-3)+1=-2 \cdot 7+36+1=10 \\
f(-2)= & (-2)^{3}-12(-2)+1=-8+24+1=17 \\
f(2)= & 2^{3}-12(2)+1=8-24+1=-15 \text { abs min } \\
f(5)= & 5^{3}-12(5)+1=125-60+1=66 \text { abs max }
\end{aligned}
$$

(b) $f(x)=\frac{\ln x}{x},[1,3]$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}=0 \\
& \begin{aligned}
1-\ln x=0 \quad \text { or } \quad \ln x & =1 \\
x & =e
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=\frac{\ln 1}{1}=\frac{0 \text { abs min }}{} \\
& f(e)=\frac{\ln e}{e}=\frac{1}{e} \approx 0.367879 \\
& f(3)=\frac{\ln 3}{3} \approx 0.366
\end{aligned}
$$

(c) $f(t)=16 \cos t+8 \sin 2 t,\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& f^{\prime}(t)=-16 \sin t+8 \cos (2 t)(2) \\
&=\frac{-16 \sin t+16 \cos 2 t}{16}=\frac{0}{16} \\
&-\sin t+\underbrace{\cos 2 t}_{1-2 \sin ^{2} t}=0
\end{aligned}
$$

$$
\begin{aligned}
& -\sin t+1-2 \sin ^{2} t=0 \\
& 2 \sin ^{2} t+\sin t-1=0 \\
& u=\sin t, \quad-1 \leq u \leq 1 \\
& 2 u^{2}+u-1=0 \\
& (2 u-1)(u+1)=0 \\
& u=\frac{1}{2}, \quad u=-1 \\
& \sin t=\frac{1}{2} \quad \sin t=-1 \\
& t=\frac{\pi}{6} \quad t=\pi<\text { not in the }
\end{aligned}
$$

$$
f(0)=16 \cos 0+8 \sin 0=16
$$

$$
f\left(\frac{\pi}{6}\right)=16 \cos \frac{\pi}{6}+8 \sin \frac{2 \pi}{6}=16 \frac{\sqrt{3}}{2}+8 \frac{\sqrt{3}}{2}=\frac{24 \sqrt{3}}{2}=12 \sqrt{3} \text { abs } \max
$$

$$
f\left(\frac{\pi}{2}\right)=16 \cos \frac{\pi}{2}+8 \sin \pi=0 \text { abs nin}
$$

