1. Find the area of the region between $y = x^2$ and $y = x + 2$ from $x = 0$ to $x = 1$.
2. Find the area of the region bounded by the line \(y = x \) and the parabola \(y = 6 - x^2 \).
3. Find the area of the region bounded by $y = x^3$ and $y = x$.
4. Find the area of the region between $x = y^2$ and $x = 32 - y^2$ from $y = -2$ to $y = 2$.
5. Find the area of the region between lines \(x = -2y + 5 \), \(x = y - 1 \) and \(y = 0 \).
6. Find the area of the region between $x = -y^2$ and $x = y - 2$.
7. The base of a certain solid is a circle with diameter AB of length $2a$. Find the volume of the solid if each cross section perpendicular to AB is a square.
8. The base of a certain solid is the region in the xy–plane bounded by the parabolas $y = x^2$ and $x = y^2$. Find the volume of this solid if every cross section perpendicular to the x–axis is a square with base in the xy–plane.
9. Find the volume of a frustum of a pyramid with square base of side b, square top of side a and height h.
10. Find the volume of the solid which is generated by rotating the region bounded by $y = \sin x$ on $[0, \pi]$ and $y = 0$ about the x–axis.
11. Verify the formula $V = \frac{1}{3} \pi r^2 h$ for the volume of the circular cone with base radius r and height h.
12. Find the volume of the solid generated by rotating the region bounded by \(y = 1 - x^2 \),
lines \(x = -1 \) and \(x = 1 \) about the line \(y = 2 \).
13. Determine the volume of the solid obtained by rotating the region bounded by $x = 5 - x^2$ and $x = 1$ about the y-axis.