Chapter 14. Vector calculus.

Section 14.5 Curl and divergence.

Curl.

If $\vec{F}=P \vec{\imath}+Q \vec{\jmath}+R \vec{k}$ is a vector field on \mathbb{R}^{3} and the partial derivatives of P, Q, and R exist, then the curl of \vec{F} is the vector field on \mathbb{R}^{3} defined by

$$
\operatorname{curl} \vec{F}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{\imath}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{\jmath}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k}
$$

Let $\nabla=\frac{\partial}{\partial x} \vec{\imath}+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \vec{k}$ be the vector differential operator.

$$
\nabla f=\frac{\partial f}{\partial x} \vec{\imath}+\frac{\partial f}{\partial y} \vec{\jmath}+\frac{\partial f}{\partial z} \vec{k}
$$

Then

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right|=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \vec{\imath}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \vec{\jmath}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k}=\operatorname{curl} \vec{F}
$$

Example 1. Find curl \vec{F} if $\vec{F}(x, y, z)=x e^{y} \vec{\imath}-z e^{-y} \vec{\jmath}+y \ln (z) \vec{k}$.

Theorem 1. If f is a function of three variables that has continuous second-order partial derivatives, then

$$
\operatorname{curl}(\nabla f)=\overrightarrow{0}
$$

Theorem 2. If \vec{F} is a vector field defined on all on \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\vec{F}=\overrightarrow{0}$, then \vec{F} is a conservative vector field.
Example 2. Determine whether or not the vector field $\vec{F}=z x \vec{\imath}+x y \vec{\jmath}+y x \vec{k}$ is conservative. If it is conservative, find a function f such that $\vec{F}=\nabla f$.

The curl vector is associated with rotation. If for a vector field \vec{F} curl $\vec{F}=\overrightarrow{0}$, then the field \vec{F} is irrotational.

Example 3. Let B be a rigid body rotation about the z-axis. The rotation can be described by the vector $\vec{w}=\omega \vec{k}$, where ω is the angular speed of B, that is the tangential speed of any point P in B divided by the distance d from the axis of rotation. Let $\vec{r}=<x, y, z\rangle$ be the position vector of P.

1. Show that velocity field of B is given by $\vec{v}=\vec{w} \times \vec{r}$
2. Show that $\vec{v}=-\omega y \vec{\imath}+\omega x \vec{\jmath}$
3. Show that curl $\vec{v}=2 \vec{w}$.

Divergence.

Definition. If $\vec{F}=<P, Q, R>$ is a vector field in \mathbb{R}^{3} and P_{x}, Q_{y}, and R_{z} exist, then the divergence of \vec{F} is the function of tree variables defined by

$$
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Example 4. Find the divergence of the vector field $\vec{F}(x, y, z)=x e^{y} \vec{\imath}-z e^{-y} \vec{\jmath}+y \ln (z) \vec{k}$.

Theorem 3. If $\vec{F}=P \vec{\imath}+Q \vec{\jmath}+Q \vec{k}$ is a vector field on \mathbb{R}^{3} and P, Q, and R have continuous second-order derivatives, then

$$
\operatorname{div} \operatorname{curl} \vec{F}=0
$$

Divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar. If $\operatorname{div} \vec{F}=0$, then \vec{F} is said to be incompressible.

Laplace operator:

$$
\operatorname{div}(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\nabla^{2} f
$$

Properties of the curl and divergence.
If f is a scalar field and \vec{F}, \vec{G} are vector fields, then $f \vec{F}, \vec{F} \cdot \vec{G}$, and $\vec{F} \times \vec{G}$ are vector fields defined by

$$
\begin{aligned}
(f \vec{F})(x, y, z) & =f(x, y, z) \vec{F}(x, y, z) \\
(\vec{F} \cdot \vec{G})(x, y, z) & =\vec{F}(x, y, z) \cdot \vec{G}(x, y, z) \\
(\vec{F} \times \vec{G})(x, y, z) & =\vec{F}(x, y, z) \times \vec{G}(x, y, z)
\end{aligned}
$$

and

1. $\operatorname{div}(\vec{F}+\vec{G})=\operatorname{div} \vec{F}+\operatorname{div} \vec{G}$
2. $\operatorname{curl}(\vec{F}+\vec{G})=\operatorname{curl} \vec{F}+\operatorname{curl} \vec{G}$
3. $\operatorname{div}(f \vec{F})=f \operatorname{div} \vec{F}+\vec{F} \cdot \nabla f$
4. $\operatorname{curl}(f \vec{F})=f$ curl $\vec{F}+(\nabla f) \times \vec{F}$
5. $\operatorname{div}(\vec{F} \times \vec{G})=\vec{G} \cdot \operatorname{curl} \vec{F}-\vec{F} \cdot \operatorname{curl} \vec{G}$
6. $\operatorname{div}(\nabla f \times \nabla g)=0$
7. curl $\operatorname{curl}(\vec{F})=\operatorname{grad} \operatorname{div} \vec{F}-\nabla^{2} \vec{F}$
8. $\nabla(\vec{F} \cdot \vec{G})=(\vec{F} \cdot \nabla) \vec{G}+(\vec{G} \cdot \nabla) \vec{F}+\vec{F} \times \operatorname{curl} \vec{G}+\vec{G} \times \operatorname{curl} \vec{F}$

Vector forms of Green's Theorem.

Let $\vec{F}=P \vec{\imath}+Q \vec{\jmath}$ be a vector field. We suppose that the plane region D, its boundary curve C, and the functions P and Q satisfy the hypotheses of Green's Theorem. Then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\oint_{C} P d x+Q d y
$$

and

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P(x, y) & Q(x, y) & 0
\end{array}\right|=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k}
$$

Therefore

$$
(\operatorname{curl} \vec{F}) \cdot \vec{k}=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \vec{k} \cdot \vec{k}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
$$

and we can rewrite the equation in Green's Theorem in the vector form

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}(\operatorname{curl} \vec{F}) \cdot \vec{k} d A
$$

If C is given by the vector equation $\vec{r}(t)=<x(t), y(t)>, a \leq t \leq b$, then the unit tangent vector

$$
\vec{T}(t)=\frac{\overrightarrow{r^{\prime}}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|}=\frac{x^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|} \vec{\imath}+\frac{y^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|} \vec{\jmath}
$$

Then the outward unit normal vector to C is given by

$$
\vec{n}(t)=\frac{y^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|} \vec{\imath}-\frac{x^{\prime}(t)}{\left|\overrightarrow{r^{\prime}}(t)\right|} \vec{\jmath}
$$

Then

$$
\begin{gathered}
\oint_{C} \vec{F} \vec{n} d s=\int_{a}^{b}(\vec{F} \cdot \vec{n})(t)\left|\overrightarrow{r^{\prime}}(t)\right| d t \\
=\int_{C} P d y-Q d x=\iint\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) d A
\end{gathered}
$$

So,

$$
\oint_{C} \vec{F} \cdot \vec{n} d s=\iint_{D} \operatorname{div} \vec{F}(x, y) d A
$$

