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Abstract. Self-similar groups and permutational bimodules are used to study
combinatorics and symbolic dynamics of expanding self-coverings. We describe
functors between the category of contracting self-similar groups and the cate-
gory of expanding self-coverings (with appropriate morphisms). These functors
transform some questions in dynamical systems to questions in algebra. As
examples we show how some plane filling curves (in particular the original
Peano curve) can be interpreted in terms of embeddings of self-similar groups.

1. Introduction

The paper is an overview of the results and methods in symbolic dynamics via
self-similar groups. Our aim is to describe the algebraic structure behind the com-
binatorics and symbolic dynamics of expanding self-coverings of topological spaces.

Symbolic dynamics encodes a dynamical system f : X −→ X by a shift map on
a space of sequences over a finite alphabet using a Markov partition of the space X
and encoding the points of X by their itineraries with respect to the partition (see
the surveys [Adl98] and [Kit98]).

We are interested here in d-fold expanding self-coverings f : X −→ X of topo-
logical spaces (possibly of orbispaces), for example post-critically finite rational
functions (restricted to their Julia sets) or self-coverings of tori. Then a sym-
bolic presentation of f may be given by a closed covering X =

⋃
x∈X Tx such that

f(Tx) = X , where X is a finite set of indices (an alphabet). The space X is repre-
sented as the quotient of the space Xω = {x1x2 . . . : xi ∈ X} of all infinite one-sided
sequences over the alphabet X and the function f is represented as the image of
the shift x1x2 . . . 7→ x2x3 . . . under the quotient map (i.e., f is semiconjugate to
the shift).

The aim of the paper is to show an algebraic structure behind such symbolic pre-
sentation of the dynamical systems. We show that combinatorics of the dynamical
system is described by a self-similarity on a group called the iterated monodromy
group of the system. The group is generated in some sense by the adjacency be-
tween the pieces of the Markov partition and is dual to the equivalence relation on
Xω given by the quotient map Xω −→ X .

Symbolic presentation of the dynamical system is not unique, since there are
different Markov partitions. But we show that if we define self-similarity of a group
in a sufficiently “distilled” way, then it will be unique and will depend only on the
dynamical system. The choice of a different Markov partition will correspond to a
choice of a “coordinate system” (a basis) of the self-similarity.
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This distilled algebraic structure is the notion of a permutational bimodule over
a group G, i.e., a set M with two commuting (left and right) actions of G on it.
We construct two objects naturally associated with such a bimodule. One is an
action of G on a rooted tree (which we call the Fock tree of the bimodule). The
other is an expanding dynamical system s : JG −→ JG (constructed provided M is
hyperbolic), called the limit dynamical system.

Both objects are uniquely constructed from the bimodule M. A choice of a basis
X of M (i.e., an orbit transversal of the right action of the group) gives symbolic
presentations of both objects. It labels the vertices of the rooted tree by finite
words over the alphabet X and gives a symbolic presentation of the limit dynamical
system: the points of JG are represented by infinite one-sided sequences over X and
s is represented by the shift.

The main feature of self-similar groups and permutational bimodules is the pos-
sibility of effective algebraic computations with them. This gives new tools in
studying combinatorics of expanding self-coverings. As an example of this compu-
tational effectiveness, see the paper [BN06c], where the “twisted rabbit” problem of
J. Hubbard and similar questions are answered using the technology of self-similar
groups.

Self-similar groups, permutational bimodules and iterated monodromy groups
are the subjects of a recent monograph [Nek05] of the author. The main new topic
of the present paper is the fact that the two main constructions of [Nek05] (the limit
dynamical system and the iterated monodromy group) are mutually inverse functors
between the properly defined categories of self-similar groups and of dynamical
systems. This categorical approach is the core theme of the paper. This is why
the main examples in the paper are maps (semiconjugacies) between spaces and
dynamical systems rather than the spaces and the dynamical systems themselves.

An important part of the paper are examples, which illustrate the use of iterated
monodromy groups in the study of dynamical systems and semiconjugacies between
them. For instance, we interpret the original paper of Peano on his plane-filling
curve [Pea90] and a paper of Milnor [Mil04] on matings in terms of self-similar
groups.
Structure of the paper. Section “Self-similar groups” describes the category
of self-similar groups (permutational bimodules), their action on the Fock tree,
the main techniques of self-similar groups (wreath recursions and automata) and
shows how to associate a self-similar group (the iterated monodromy group) to a
self-covering of a topological space.

The next section “Limit spaces” gives the connection in the other direction: we
show how a dynamical system can be constructed from a permutational bimodule,
show functoriality of this construction and prove some properties of maps between
the limit spaces, which are induced by inclusion of self-similar groups.

Fourth section “Abelian groups” considers some examples of self-similar actions
of abelian and virtually abelian groups. There are not many new results in this
section, but we compute some examples, which will be used in the last section.
Besides that we consider the limit space of a non-self-replicating (non-recurrent)
self-similarity on Z (which is associated to a numeration system with base 1.5).

In fifth section “Complex polynomials” we show how the classical notions from
symbolic dynamics of post-critically finite polynomials can be interpreted in terms
of self-similar groups.
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The last section “Plane-filling curves” considers some examples of plane-filling
maps, which are induced by morphisms (embeddings) of self-similar groups. It
was amazingly easy to translate the historically first example of a plane-filling
curve—the Peano curve [Pea90], into the language of self-similar groups. The paper
of Peano was already written in symbolic terms and one just had to rewrite the
definitions in a group-theoretic way.

The second example is taken from a paper of J. Milnor [Mil04] on matings of
polynomials. We show that the plane-filling dendrite constructed in the paper of
J. Milnor is induced by an embedding of self-similar groups and show how the
Schreier graphs of the embedded iterated monodromy group can be constructed
using the classical paper-folding procedure.

The last example of the paper is the Sierpiński plane-filling curve, which is also
constructed as a map induced by an embedding of self-similar groups.

2. Self-similar groups

2.1. Self-similar actions. If X is a finite set then by X∗ we denote the set of finite
words over the alphabet X (the free monoid generated by X).

We consider X∗ as a rooted tree with the empty word as the root and where a
vertex v ∈ X∗ is connected to every vertex of the form vx for x ∈ X.

Definition 1. A (faithful) self-similar group (G,X) is a group G together with a
faithful action on X∗ such that for every g ∈ G and x ∈ X there exist h ∈ G and
y ∈ X such that

g(xv) = yh(v)
for all v.

It is easy to see that every self-similar group acts by automorphisms on the
rooted tree X∗.

We will write the equality from the definition formally as

g · x = y · h.

This formal equality becomes a true equality of compositions of transformations of
X∗, if we identify letters with “creation operators”

x : v 7→ xv.

2.1.1. Example: binary adding machine. Let X = {0 , 1}. Consider an automor-
phism of the rooted tree X∗ given by the following recurrent definition

a(0w) = 1w, a(1w) = 0a(w),

(and the condition that the image of the empty word is the empty word).
It is easy to see that these recurrent relations define the transformation a in a

unique way. This transformation is called the binary adding machine, or the binary
odometer. This name comes from the fact that a acts on the binary sequences in
the same way as adding 1 acts on the binary numbers. Namely, a(x1x2 . . . xn) =
y1y2 . . . yn if and only if

x1 + 2x2 + 22x3 + · · · 2n−1xn + 1 = y1 + 2y2 + 22y3 + · · · 2n−1yn (mod 2n).

The infinite cyclic group 〈a〉 is a self-similar group (more precisely, it is a self-
similar action of the infinite cyclic group). We have

a2n · 0 = 0 · an, a2n+1 · 0 = 1 · an
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and
a2n · 1 = 1 · an, a2n+1 · 1 = 0 · an+1.

2.1.2. The Basilica group. Consider the group acting on the tree X∗ over the al-
phabet X = {0, 1} and generated by two transformations a and b, which are given
by

a(0w) = 1w, b(0w) = 0w
a(1w) = 0b(w), b(1w) = 1a(w).

We will see later that this group is related to the polynomial z2 −1, hence the name
“Basilica”.

It is interesting that this group was defined and studied by R.Grigorchuk and
A.Żuk just as a group generated by a three-state automaton, without knowing the
relation with dynamics (see [GŻ02a, GŻ02b]).

2.2. Permutational bimodules. Let us denote by M = X ·G the set of pairs x ·g,
x ∈ X, g ∈ G, seen as transformations

x · g(v) = xg(v)

of X∗. The correspondence between the pairs and the transformation is bijective,
since we assume that the action of G on X∗ is faithful. Then it follows directly from
the definition of a self-similar action that G acts on M from left and from right by
compositions:

(1) h · (x · g) = y · hxg (x · g) · h = x · gh,

where hx and y are such that h(xw) = yhx(w), i.e., h · x = y · hx.
The left and the right actions of G on M commute and we get an example of a

permutational G-bimodule.

Definition 2. Let G be a group. A (permutational) G-bimodule is a set M together
with commuting left and right actions of G on M. More explicitly, for every g ∈ G
and x ∈ M we have elements g · x, x · g ∈ M and

• x · 1 = 1 · x = x for all x ∈ M,
• (x · g) · h = x · (gh) and g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ M,
• (g · x) · h = g · (x · h) for all g, h ∈ G and x ∈ M.

We will call the bimodule M = X ·G defined by (1) the self-similarity bimodule
of the action (G,X). Self-similarity bimodules have two special properties:

(a) The right action of G on M is free, i.e., x · g = x implies g = 1.
(b) The number of orbits of the right action of G on M is finite.

We call a permutational G-bimodule a covering bimodule if it satisfies the prop-
erties (a) and (b). We say that a covering bimodule is d-fold if the number of orbits
of the right action is d.

Definition 3. A basis of a covering G-bimodule M is a transversal of the orbits
of the right action, i.e., a set Y such that every element x ∈ M can be uniquely
written in the form y · g for y ∈ Y and g ∈ G.

For example, if M is the self-similarity bimodule X · G of a self-similar action
(G,X), then the set {x · 1 : x ∈ X} is a basis of M, which we will identify with X
(identifying x · 1 with x).
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On the other hand, if we have a covering G-bimodule M and a basis Y, then we
get an action of G on Y∗ defined recurrently by the condition that

g(xw) = yh(w)

for all w ∈ Y∗ if g · x = y · h in M (the elements y ∈ Y and h ∈ G are uniquely
determined by g ∈ G and x ∈ Y, since g · x ∈ M is uniquely written in the form
y · h, by the definition of a basis). This action of G on Y∗ is called the self-similar
action associated with the bimodule M and the basis Y.

The following is more or less straightforward (see Proposition 2.3.4 of [Nek05]
for details).

Proposition 2.1. Let M be a covering G-bimodule and let X and Y be two bases of
M. Then the associated actions of G on X∗ and Y∗ are conjugate and the conjugator
α : X∗ −→ Y∗ is defined by the recurrent formula

α(xw) = yxhx(α(w)),

where yx ∈ Y and hx ∈ G are such that x = yx · hx and hx acts on α(w) ∈ Y∗ by
the action of G on Y∗.

Taking into account the last proposition and additional reasons, which will be
more evident below, we adopt the following more general definition.

Definition 4. A self-similar group is a triple (G,M,X), where G is a group, M is
a covering G-bimodule and X is a basis of M.

We will usually omit M and write just (G,X), when it is clear what bimodule is
used.

In many cases the following technical condition is useful.

Definition 5. A self-similar group (G,M,X) is self-replicating (or recurrent, in
terminology of [Nek05]) if the left action of G on M is transitive, i.e., if for every
x, y ∈ X and h ∈ G there exists g ∈ G such that g · x = y · h.

2.3. Tensor products and the Fock tree. Let us go back to the abstract case
of a permutational G-bimodule M (without whatsoever conditions on the right
action).

Definition 6. Let M1 and M2 be permutational G-bimodules. Their tensor prod-
uct M1 ⊗ M2 is the quotient of the direct product M1 × M2 by the identifications

x1 · g ⊗ x2 = x1 ⊗ g · x2

for xi ∈ Mi and g ∈ G. The right and left actions of G on M1 ⊗ M2 are given by

g1 · (x1 ⊗ x2) · g2 = (g1 · x1) ⊗ (x2 · g2).

It is not hard to prove that the tensor product of two bimodules is well defined
and that tensor product is an associative operation, i.e., that the bimodules (M1 ⊗
M2) ⊗ M3 and M1 ⊗ (M2 ⊗ M3) are isomorphic, where the isomorphism is given
by the map (x1 ⊗ x2) ⊗ x3 7→ x1 ⊗ (x2 ⊗ x3). For more details see [Nek05].

In particular, if M is a G-bimodule, then the bimodules M⊗n are defined for
every natural n. We set M⊗0 = G with the natural left and right actions of G on
itself. Note that G⊗ M is naturally isomorphic to M for every G-bimodule M.

The following is straightforward.
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Proposition 2.2. The disjoint union
⊔

n≥0 M⊗n is a semigroup with respect to
the tensor multiplication.

We call this semigroup the tensor semigroup of the bimodule and denote it M∗.
Note that G = M⊗0 is a subgroup of M∗ and hence M∗ is a permutational G-
bimodule (which can be defined as the direct sum of the bimodules M⊗n).

We will write in some cases x1x2 . . . xn instead of x1 ⊗ x2 ⊗ · · · ⊗ xn.

Lemma 2.3. Let M1 and M2 be G-bimodules. If x1 ⊗ x2 and y1 ⊗ y2 ∈ M1 ⊗ M2
belong to one right G-orbit, then x1 and y1 belong to one right G-orbit.

Proof. There exists g ∈ G such that x1 ⊗ x2 = y1 ⊗ y2 · g. But this means, by
definition of a tensor product, that there exists h ∈ G such that x1 = y1 · h and
h · x2 = y2 · g. Hence, x1 and y1 belong to one right orbit. �

Definition 7. Let M be a permutational G-bimodule. Then its Fock tree (of right
orbits) is the set

TM = M∗/G =
⊔

n≥0

M⊗n/G

of the rightG-orbits of the tensor semigroup of M. The root of the tree is the unique
element of the set M⊗0/G = G/G and two orbits A ∈ M⊗n/G and B ∈ M⊗(n+1)/G
are connected by an edge if there exist m ∈ A and x ∈ M such that m⊗ x ∈ B.

It follows from Lemma 2.3 that the right orbit of m ∈ M⊗(n−1) is uniquely
determined by the right orbit of m⊗ x ∈ M⊗n, hence TM is a rooted tree.

Lemma 2.4. Let M1 and M2 be G-bimodules and let A ⊂ M2 be an orbit of the
right action of G on M2. Then for every y ∈ M1 the set y ⊗ A is a right orbit of
M1 ⊗ M2.

In particular (for M1 = G) for every g ∈ G the set g ·A is a right orbit.

Proof. For any x1, x2 ∈ A there is g ∈ G such that x1 = x2 · g. But then y ⊗ x1 =
y ⊗ x2 · g, hence y ⊗ x1 and y ⊗ x2 belong to one right orbit. Consequently, y ⊗A
is a subset of a right orbit of M1 ⊗ M2.

On the other hand, suppose that y ⊗ x1 ∈ y ⊗A and y′ ⊗ x2 ∈ M1 ⊗ M2 belong
to one right orbit. Then there exists g ∈ G such that y ⊗ x1 = y′ ⊗ x2 · g, hence
y′ ⊗ x2 = y ⊗ x1 · g−1, i.e., y′ ⊗ x2 ∈ y ⊗A. �

Corollary 2.5. The left action of G on M∗ induces an action of G by automor-
phisms of the Fock tree TM.

2.4. Symbolic labeling of the Fock tree. In the case of covering bimodules
we get a nice symbolic labeling of the vertices of the Fock tree. Let M be a
covering bimodule and let X be its basis. We have the following property of bases
of bimodules (the proof, which is easy, can be found in Proposition 2.3.2 of [Nek05]).

Proposition 2.6. Let M1 and M2 be covering G-bimodules with bases X1 and X2,
respectively. Then M1 ⊗ M2 is also a covering bimodule and the set {x1 ⊗ x2 :
xi ∈ Xi} is its basis.

In particular, if X is a basis of a bimodule M, then Xn = {x1 ⊗· · ·⊗xn : xi ∈ X}
is a basis of M⊗n. Since a basis by definition is a right orbit transversal, we get
a bijection Λ : Xn −→ M⊗n/G, mapping an element of Xn to its right orbit. It
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follows now from the definition of the Fock tree that the orbit containing v ∈ Xn

is connected to the orbits containing elements v⊗ x for x ∈ X. Thus, we obtain an
isomorphism Λ : X∗ −→ TM.

It is also easy to see that the isomorphism Λ conjugates the left action of G on
TM with the self-similar action (G,M,X) associated with the bimodule M and the
basis X. In particular, we get another proof of the fact that the action (G,M,X)
does not depend, up to a conjugacy, on the choice of the basis X.

2.5. Iterated monodromy groups. Let M be an arcwise connected and locally
arcwise connected topological space and let M1 be its arcwise connected subset.
Suppose that f : M1 −→ M is a d-fold covering map. We call such maps partial
self-coverings.

We can iterated the partial defined map f and get dn-fold coverings fn : Mn −→
M (possibly defined on smaller subsets).

If we choose a basepoint t ∈ M, then the fundamental group π1(M, t) acts
naturally (by the monodromy action) on the set of preimages f−n(t) of t. In this
action the image γ(z) of a point z ∈ f−n(t) under the action of a loop γ ∈ π1(M, t)
is the end of the unique fn-preimage γz of γ which starts in z.

The disjoint union
Tf =

⊔

n≥0

f−n(t)

has a natural structure of a rooted tree. The root is the basepoint t (which is the
unique element of f−0(t)) and a vertex of the nth level z ∈ f−n(t) is connected to
the vertex f(z) ∈ f−(n−1)(t) of the (n− 1)st level.

It is easy to see that the monodromy action of π1(M, t) on the levels of the tree
Tf preserves the adjacency of the vertices, hence it is an action by automorphisms
of the rooted tree Tf . We call it the iterated monodromy action.

Definition 8. The iterated monodromy group of a partial self-covering f : M1 −→
M, denoted IMG (f), is the quotient of the fundamental group π1(M, t) by the
kernel of the iterated monodromy action, i.e., it is the group of automorphisms of
Tf which are defined by the monodromy action of the elements of the fundamental
group.

So far the iterated monodromy group is just an automorphism group of an ab-
stract d-regular rooted tree with no self-similarity. But there is a natural self-
similarity on IMG (f) which is best defined in terms of a covering π1(M, t)-bimodule.

Definition 9. Let f : M1 −→ M be a partial self-covering and let t ∈ M be a
point. The π1(M, t)-bimodule Mf,t associated with f is the set of homotopy classes
of paths in M starting in t and ending in a preimage z ∈ f−1(t) of t under f . The
right action is concatenation of the paths

` · γ = `γ

and the left action is concatenation with a lift of γ:

γ · ` = γz`,

where γz is the f -preimage of γ starting in z.

Note that here we compose paths as functions, i.e., in the path `γ the path γ is
passed before the path `.
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Figure 1

Proposition 2.7. Let f1 : M1 −→ M and f2 : M2 −→ M be partial self-coverings
of M. Then the π1(M, t)-bimodule Mf1,t ⊗ Mf2,t is isomorphic to the π1(M, t)-
bimodule Mf1◦f2,t associated to the composition f1 ◦ f2 of the self-coverings. More-
over, the isomorphism is the map

L : `1 ⊗ `2 7→ f−1
2 (`1)`2`2,

where f−1
2 (`1)`2 is the f2-preimage of `1 starting at the end of the path `2.

Proof. We have to show that L is well defined, bijective and agrees with the bi-
module structures.

Let us prove that L is well defined. Suppose that `1 ⊗ `2 and `′
1 ⊗ `′

2 are equal
elements of Mf1,t ⊗ Mf2,t. This means that there exists an element γ ∈ π1 (M, t)
such that `′

1 = `1 · γ and γ · `′
2 = `2. We have `1 · γ = `1γ and γ · `′

2 = f−1
2 (γ)`′2

`′
2.

Therefore

L (`1 ⊗ `2) = f−1
2 (`1)`2

`2 = f−1
2 (`1)`2

f−1
2 (γ)`′2

`′
2 =

f−1
2 (`1γ)`′2

`′
2 = f2 (`′

1)`′2
`′

2 = L (`′
1 ⊗ `′

2) ,

(see the left-hand side part of Figure 1).
Let us show that L is injective. Suppose that L (`1 ⊗ `2) = L (`′

1 ⊗ `′
2). This

means that the paths f−1
2 (`1)`2

`2 and f−1
2 (`′

1)`′2
`′

2 are homotopic. In particular

the endpoints of the paths are equal. It follows that
(
f−1

2 (`′
1)−1

`′2

)−1
f−1

2 (`1)`2
is a

path homotopic to the path `′
2`

−1
2 (see the right-hand side part of Figure 1).

Then

γ = f2

((
f−1

2 (`′
1)−1

`′2

)−1
f−1

2 (`1)`2

)
= (`′

1)−1
`1

is a loop such that
`′

1 · γ = `1

and
γ · `2 = f−1

2 (γ)`2
`2 = `2`

−1
2 `2 = `′

2,

hence `1 ⊗ `2 = `′
1 ⊗ `′

2.
Let us show that L is surjective. Suppose that ` ∈ Mf1◦f2,t is an arbitrary

element, i.e., a path starting at t and ending in a point t′ ∈ (f1 ◦ f2)−1 (t). Choose
a path `2 ∈ Mf2,t starting at t and ending in an f2-preimage of t. Then f2

(
``−1

2
)

is a path starting in t and ending in an f1-preimage of t. Let us denote it `1. Then
`1 ∈ Mf1 and

L (`1 ⊗ `2) = f−1
2 (`1) `2 = ``−1

2 `2 = `.
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It only remains to show that L agrees with the bimodule structures. The equality

L (`1 ⊗ `2 · γ) = L (`1 ⊗ `2) · γ

is obvious.
Let us show that L agrees with the left actions. The path γ ·`1 is by definition the

path f−1
1 (γ)`1

`1. Then the path L (γ · `1 ⊗ `2) is the path of f−1
2
(
f−1

1 (γ)`1
`1
)

`2
`2.

We have therefore

L (γ · `1 ⊗ `2) = (f1 ◦ f2)−1 (γ)f−1
2 (`1)`2

f−1
2 (`1)`2

`2 = γ · L (`1 ⊗ `2) ,

i.e., L agrees also with the left action. �

We get then by induction the following.

Corollary 2.8. If fi : Mi −→ M for i = 1, . . . , n is a sequence of partial self-
covering, then the tensor product bimodule Mf1,t ⊗ · · · ⊗ Mfn,t is isomorphic to the
bimodule Mf1◦···◦fn,t via the map L putting into correspondence to `1 ⊗ · · · ⊗ `n the
path of the form

(f2 ◦ f3 ◦ · · · ◦ fn)−1(`1) . . . (fn−1 ◦ fn)−1(`n−2)f−1
n (`n−1)`n.

Corollary 2.9. Let f : M1 −→ M be a partial self-covering. Then the Fock
tree of the bimodule Mf,t is isomorphic to the tree Tf of preimages of t, where
the isomorphism maps an element `1 ⊗ · · · ⊗ `n ∈ M⊗n

f,t to the end of the path
L(`1 ⊗ · · · ⊗ `n).

Proof. It is easy to see that L is a bijection between the vertices of the trees (since
two elements `1, `2 ∈ Mf,t belong to one right orbit if and only if the ends of the
paths `1 and `2 coincide).

It is hence sufficient to show that the map L agrees with the vertex adjacency
in the Fock tree and in the tree of preimages. But

f(L(`1 ⊗ · · · ⊗ `n)) = f(f−(n−1)(`1)f−(n−2)(`2) . . . f−1(`n−1)`n) =

f−(n−2)(`1)f−(n−3)(`2) . . . `n−1f(`n) = L(`1 ⊗ · · · ⊗ `n−1)f(`n),

hence the endpoint of L(`1 ⊗ · · · ⊗ `n−1) is the image under f of the endpoint of
L(`1 ⊗ · · · ⊗ `n). �

As a corollary of Proposition 2.7 and Corollary 2.9 we get the following propo-
sition.

Proposition 2.10. The self-similar action of π1(M, t) associated with the π1(M, t)-
bimodule Mf,t (and any its basis) is conjugate with the iterated monodromy action
of π1(M, t) on the tree of preimages Tf .

As an example, consider the self-covering f : z 7→ zd of the unit complex circle.
Take the basepoint t = 1. Then the elements of the bimodule Mf,t are (homotopy
classes of) paths from t to the roots of unity of degree d. They are naturally labeled
by rotation angle (when we travel along the path). If we measure the angle in full
turns, then the angle is any number from the set Z/d. The fundamental group
(again via rotation angles) is identified with Z. The right action on the bimodule
(concatenation of the path with a loop) is given by (n/d) ·m = n/d+m, while the
left action (concatenation of the path with an f -preimage of the loop) is given by
m · (n/d) = (m+ n)/d.
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It is natural hence to identify the bimodule Mf,t with the set of the linear
functions of the form Mn(x) = (x + n)/d. If we identify the elements m of Z with
their natural action Sm(x) = x + m on R, then the bimodule operations are just
compositions of maps (acting from the right):

x ·Mn · Sm = (x+ n)/d+m,

x · Sm ·Mn = ((x+m) + n)/d.

2.6. Another example: Mapping class groups and Thurston maps. Recall
that a Thurston map is a post-critically finite branched covering f : S2 −→ S2 of
the sphere.

Let f : S2 −→ S2 be a Thurston map and let Pf be its post-critical set. Denote
by G the mapping class group of (S2, Pf ), which is defined as the group of homotopy
classes relative to Pf of homeomorphisms g : S2 −→ S2 acting trivially on Pf .

Denote by F the set of homotopy classes of branched coverings of the form
g1 ◦ f ◦ g2 for g1, g2 ∈ G. Every element of F is a Thurston map with the post-
critical set Pf and with the same dynamics (including the branching indices) on Pf
as f .

It is obvious that F is a G-bimodule with respect to pre- and post-compositions.
This bimodule was used in [BN06c] to solve the “twisted rabbit” problem of J. H. Hub-
bard, which in a general form asks when to elements f1, f2 of the bimodule F are
conjugate, i.e., when there exists h ∈ G such that f1 = h−1 · f2 · h.

2.7. Wreath recursion. Notationally and computationally most convenient way
of representing self-similar groups are the associated wreath recursions. However,
since precise form of the wreath recursion depends on the choice of a basis of the
self-similarity bimodule, it is not canonical and we will see later that one has to
change the basis of the bimodule (and hence the wreath recursion) rather often.

Let us recall the definition of a (permutational) wreath product.

Definition 10. Let G be a group and let H be a group acting on a finite set X.
Then the permutational wreath product H o G is the semidirect product H o GX,
where H acts on GX by the original action on X.

Let us repeat this definition in a more explicit way. Let X = {1, 2, . . . , d}. Then
the elements of HoGX are written h(g1, g2, . . . , gn), where h ∈ H and gi ∈ G. The
multiplication is given by

h(g1, g2, . . . , gn) · h′(g′
1, g

′
2, . . . , g

′
n) = hh′(gh′(1)g

′
1, gh′(2)g

′
2, . . . , gh′(n)g

′
n).

For example, if X = {0 , 1}, then the elements of H o G are written either as
(g0, g1) or as σ(g0, g1), where σ = (01 ) is the transposition. (We do not write
trivial elements of H or of GX.) Then multiplication in H o G is performed using
the following simple rules

(g0, g1) · (g′
0, g

′
1) = (g0g

′
0, g1g

′
1), (g0, g1)σ = σ(g1, g0).

For example, σ(1, a)σ(1, a) = (a, a).
Let us come back to permutational bimodules. Let M be a covering G-bimodule.

Then M as a right G-module MG is free and has a finite number d of orbits. Thus,
the right G-space MG is isomorphic to a disjoint union of d copies of G. Namely,
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if X is a basis of M, then every element of M can be uniquely written as x · g for
x ∈ X and g ∈ G, and the right action is given by

(x · g) · h = x · (gh).

An automorphism of the right G-space MG is a bijection F : M −→ M such
that F (x · g) = F (x) · g for all x ∈ M and g ∈ G. Let us identify the automorphism
group of the right module MG.

The following proposition is straightforward (see Proposition 2.2.1 of [Nek05]).
Here S (X) denotes the symmetric group of permutations of the set X.

Proposition 2.11. Let MG be a free right G-space with d orbits. Then the group
of automorphisms of MG is isomorphic to S (X) oG. If we fix an orbit transversal
X = {x1, x2, . . . , xd} then an isomorphism is given by

ψX : F 7→ π(g1, g2, . . . , gd),

where π ∈ S (X) and gi are such that

F (xi) = π(xi) · gi.

We will usually order the elements of the alphabet X = {x1, x2, . . . , xd} and
identify in this way the symmetric group S (X) with the symmetric group S (d) on
the set {1, 2, . . . , d}. Then the elements of the wreath product are written in the
form σ(g1, g2, . . . , gd) for σ ∈ S (d) and gi ∈ G.

Proposition 2.12. Let ψX : Aut MG −→ S (d) oG be the isomorphism defined by
a basis X = {x1, x2, . . . , xd} of MG and let Y = {y1, y2, . . . , yd} be another basis of
MG. Let π ∈ S (d) and gx ∈ G for x ∈ X be such that

yi = xπ(i) · gi.

Then the isomorphism ψY = Aut MG −→ S (d) o G is equal to the composition of
ψX with conjugation by π(g1, g2, . . . , gd).

Proof. We have xπ(i) = yi · g−1
i , hence xi = yπ−1(i) · g−1

π−1(i).
Suppose that ψX(F ) = σ(h1, h2, . . . , hd) for an automorphism F of MG. Then

for every i we have F (xi) = xσ(i) ·hi. Consequently, F (yπ−1(i)) · g−1
π−1(i) = yπ−1σ(i) ·

g−1
π−1σ(i)hi. If we denote j = π−1(i), then we get

F (yj) · g−1
j = yπ−1σπ(j) · g−1

π−1σπ(j)hπ(j),

hence
F (yj) = yπ−1σπ(j) · g−1

π−1σπ(j)hπ(j)gj.

Therefore,

ψY(F ) = π−1σπ
(
g−1

π−1σπ(1)hπ(1)g1, . . . , g
−1
π−1σπ(d)hπ(d)gd

)
=

(g−1
1 , . . . , g−1

d )π−1 · σ(h1, . . . , hd) · π(g1, . . . , gd).

�

Every element of g ∈ G defines an automorphism of the right space MG by its
left action:

g · (x · h) = (g · x) · h.
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Hence, the left action of G on the bimodule M defines a homomorphism from G to
the automorphism group of the right module MG. By Proposition 2.11, this is a
homomorphism from G to S (X) oG.

Definition 11. Let M be a covering G-bimodule and let X be its basis. Then the
associated wreath recursion is the map φ : G −→ S (X) o G defining the left action
of G on the right module MG. It is computed by the rule

φ(g) = π(g1, g2, . . . , gn),

where π ∈ S (X) and gi ∈ g are such that g · xi = π(xi) · gi.

We will rather routinely change bases of permutation bimodules and change the
wreath recursion accordingly, using Proposition 2.12.

Example. Consider the binary adding machine action defined by the wreath re-
cursion

φ(a) = σ(1, a)
and post-compose the recursion with conjugation by (1, a). We get then the recur-
sion

φ(a) = (1, a−1)σ(1, a)(1, a) = σ(a−1, a2).
This recursion corresponds to the binary numeration system with the set of digits

{0, 3}:

1 + (0 + 2x2 + 22x3 + · · · ) = 3 + 2(−1 + x2 + 2x3 + 22x4 + · · · ),

1 + (3 + 2x2 + 22x3 + · · · ) = 0 + 2(2 + x2 + 2x3 + 22x4 + · · · ).

2.8. Automata. Another convenient language used in the theory of self-similar
groups is the language of automata theory. We interpret a self-similar group (G,X)
as an automaton over alphabet X with set of states G, which being in state g ∈ G
and reading a letter x gives the letter y and goes to the state h, if

g · x = y · h

in the associated self-similarity bimodule.
In some cases the automatonGmay have finite sub-automata, i.e., subsetsA ⊂ G

such that g|x ∈ A for all g ∈ A and x ∈ X. Here and later g|x is given by the
condition g · x = g(x) · g|x.

In this case A is described by its Moore diagram. It is a graph with set of vertices
A in which we draw for every pair g ∈ G, x ∈ X an arrow from g to g|x labeled by
the pair (x, g(x)). As an example, see the Moore diagram of the subset {a, 1, a−1}
of the adding machine action on Figure 2.

2.9. Category of self-similar groups. We have seen that in many cases a more
canonical object is the self-similarity bimodule, while the choice of a basis is arbi-
trary. Therefore, we define the category of self-similar groups as the category of
covering bimodules.

Definition 12. Objects of the category of self-similar groups are pairs (G,M),
where G is a group and M is a covering G-bimodule. A morphism (f, F ) :
(G1,M1) −→ (G2,M2) is a pair consisting of a homomorphism of groups f : G1 −→
G2 and a map F : M1 −→ M2 such that

F (g1 · x · g2) = f(g1) · F (x) · f(g2)

for all g1, g2 ∈ G and x ∈ M. The morphisms are composed in the natural way.
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Example. Let f : M1 −→ M and f ′ : M′
1 −→ M′ be partial self-coverings and

let H : M −→ M′ be a continuous map such that the diagram

M1
H−→ M′

1yf
yf ′

M H−→ M1

is commutative (in particular H(M1) ⊆ M′
1). We call such a map H a semiconju-

gacy.
Let t ∈ M and t′ ∈ M′ be basepoints such that H(t) = t′. Then the map H

naturally defines a morphism of the associated bimodules H∗ : (π1(M, t),Mf,t) −→
(π1(M′, t′),Mf ′,t′), which maps the elements of the fundamental group and the
elements of the bimodule to their images under the map H .

It is easy to see that the map H 7→ H∗ is a functor from the category of partial
self-coverings and semicojugacies (with fixed basepoints) to the category of self-
similar groups.

Similarly, we can replace the fundamental groups π1(M, t) and π1(M′, t′) by the
iterated monodromy groups of the maps f and f ′ respectively, and get functor into
the category of faithful self-similar groups, i.e., self-similar groups acting faithfully
on their Fock trees.

Lemma 2.13. Suppose that (f, F ) : (G1,M1) −→ (G2,M2) is a morphism. Then
the image of a right G1-orbit of M1 under F is a subset of a G2-orbit of M2.
Consequently, every morphism induces a map on the sets of right orbits.

Proof. If x, y ∈ M belong to one right orbit, then there exists g ∈ G such that
x · g = y, hence F (y) = F (x) · f(g), i.e., F (x) and F (y) belong to one right
orbit. �

The following is straightforward.

Lemma 2.14. Let (f, F ) : (G1,M1) −→ (G2,M2) be a morphism. Set

F⊗n(x1 ⊗ x2 ⊗ · · · ⊗ xn) = F (x1) ⊗ F (x2) ⊗ · · · ⊗ F (xn).

Then F⊗n is well defined and (f, F⊗n) : (G1,M⊗n
1 ) −→ (G2,M⊗n

2 ) is a morphism.

The bimodule M⊗0 is naturally identified with the group G itself, and then F⊗0

is identified with f . Therefore, in what follows we denote f by F⊗0 and use one
letter F for a morphism of bimodules.

Here is another definition of a morphism of bimodules.

Definition 13. A morphism F : (G1,M1) −→ (G2,M2) is a homomorphism F :
M∗

1 −→ M∗
2 of the tensor semigroups such that F (G1) ⊆ G2 and F (M1) ⊆ M2.

Let
TM = M∗/G

be, as before, the Fock tree of right orbits. Then Lemma 2.14 implies, that every
morphism F : (G1,M1) −→ (G2,M2) induces a map of Fock trees F̃ : TM1 −→ TM2

equal to map induced on the right orbits of M⊗n by the morphism F⊗n. The map
F̃ is equivariant, i.e., for any vertex v ∈ TM1 and for any g ∈ G

F̃ (g(v)) = F⊗0(g)
(
F̃ (v)

)
.
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Consequently, we get a functor from the category of covering bimodules into the
category of actions on rooted trees (with equivariant maps as morphisms).

2.10. Faithful self-similar groups and pull-backs of self-coverings. We say
that a permutation bimodule (G,M) is faithful if G acts faithfully on the Fock tree
M∗/G, i.e., if the associated self-similar action is faithful.

Let (G,M) be an arbitrary covering bimodule and let KCG be the kernel of the
action of G on the Fock tree. Let f : G −→ G/K be the canonical epimorphism.

The next lemma is straightforward.

Lemma 2.15. The set M/K = {x ·K : x ∈ M} of the right K-orbits on M is a
G/K-bimodule in the natural way:

gK · (x ·K) = (g · x) ·K, (x ·K) · gK = (x · g) ·K.

The map (f, F ) : (G,M) −→ (G/K,M/K) mapping x ∈ M to its K-orbit is a
morphism.

The bimodule (G/K,M/K) is called the faithful quotient of (G,M).

Proposition 2.16. Let F : (G1,M1) −→ (G2,M2) be a morphism of covering
bimodules and suppose that (G1,M1) is faithful. Suppose that F induces an injective
map of the sets of right orbits. Then the group morphism F⊗0 : G1 −→ G2 is
injective.

Proof. The morphism F induces an injective equivariant map F̃ : TM1 −→ TM2 of
the Fock trees. Suppose that g ∈ G1 belongs to the kernel of F⊗0. Then the action
of F⊗0(g) on the subtree F̃ (TM1) of TM2 is trivial. Hence, by equivariance, the
action of g on TM1 is trivial. But G1 is faithful, hence g = 1 and F⊗0 has trivial
kernel. �

Example. Let f : M1 −→ M be a partial d-fold self-covering and let H : M′ −→
M be a continuous map. Then there exists a d-fold covering f ′ : M′

1 −→ M′ (called
the pull-back of f by H) and a map H1 : M′

1 −→ M1 such that the diagram

M′
1

H1−→ M1yf ′

yf

M′ H−→ M

is commutative. Suppose that there also exists an embedding M′
1 ↪→ M′ making

the diagram
M′

1 ↪→ M′
yH1

yH

M1 ↪→ M
commutative, where M1 ↪→ M is the identical embedding.

Then f ′ : M′
1 −→ M′ becomes a partial self-covering of M′ by its subset M′

1
(if we identify M′

1 with its image under the embedding) and the map H becomes
a morphism of the partial self-coverings.

Hence the morphism H induces a morphism

H∗ : (IMG (p′) ,Mp′) −→ (IMG (p) ,Mp)
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of the respective iterated monodromy groups. The corresponding morphism H⊗0
∗ :

IMG (p′) −→ IMG (p) is an embedding by Proposition 2.16. Note that the mor-
phism induced by H on the fundamental groups is not injective in general. (Con-
sider for example the embedding H of the Julia set of z2 − 1 into C \ {0,−1}.)

3. Limit spaces

We have seen above that for every permutational G-bimodule M we have a
naturally defined rooted tree TM on which G acts. A choice of a basis X of M
defines a labeling of the tree TM by words in the alphabet X such that the obtained
action of G on X∗ is self-similar. Then the associated wreath recursion gives a
convenient way to deal with the action.

Note that the action of G on the boundary of the tree TM can be defined as
the action of G on the right module M⊗ω = M ⊗ M ⊗ · · · . This right module is
defined as the set of sequences x1 ⊗ x2 ⊗ . . . of elements of M where two sequences
x1⊗x2⊗. . . and y1⊗y2⊗. . . are identified if for every k the elements x1⊗x2⊗· · ·⊗xk
and y1 ⊗ y2 ⊗ · · · ⊗ yk belong to one right orbit.

We go in this section in the other direction and consider the right G-space
M⊗−ω = . . . ⊗ M ⊗ M (defined in an appropriate way). It will have a structure
of a metrizable locally compact finite-dimensional topological space. The group G
acts on it by a proper co-compact action. We will also define a continuous self-map
s on the quotient JG = M⊗−ω/G.

Similarly to the case of the action of G on the tree TM, a choice of a basis
X of M gives a symbolic presentation of the spaces M⊗−ω and JG and the map
s : JG −→ JG. The space M⊗−ω is represented as a quotient of the space X−ω ×G
by a closed equivalence relation with finite classes. The space JG is also a quotient
of the space X−ω by a closed relation with finite equivalence classes. The map s is
defined in this symbolic representation by the shift.

3.1. Hyperbolic bimodules. Let M be a covering G-bimodule and let X be its
basis. If g · v = u · h in M⊗n for g, h ∈ G and v, u ∈ Xn, then we denote g|v = h.
Recall that g ·v = u ·h implies that g(vw) = uh(w) for all w ∈ X∗, in the associated
action of G on X∗. We call therefore g|v the restriction of g at v.

Definition 14. Let X be a basis of a covering G-bimodule M. We say that the
self-similar action (G,X) is contracting if there is a finite set N ⊂ G such that for
every g ∈ G there exists n ∈ N such that g|v ∈ N for all words v ∈ X∗ of length
greater than n. The smallest subset N of G satisfying this condition is called the
nucleus of the action.

It is proved in [Nek05] that if the action (G,X) is contracting for some basis
X of M, then the action (G,Y) is contracting for every basis Y. Therefore, being
contracting depends only on the bimodule M and does not depend on a particular
choice of the basis.

Note however that the nucleus N depends on the choice of the basis.

Definition 15. A covering G-bimodule M is said to be hyperbolic if the action
(G,X) is contracting for some (and hence for every) basis X.

Example. Suppose that f : M1 −→ M is a partial self-covering and suppose that
it is expanding, i.e., that there exists 0 < λ < 1 such that every f -preimage of a
path γ in M of length l has length at most λ−1l. Suppose also that for every R > 0
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the number of elements of π1(M, t) represented by loops of length ≤ R is finite
(this is the case, for instance, when M is a complete Riemannian manifold). We
leave to the reader to prove that then the bimodule Mf,t is hyperbolic.

It easily follows from the definition that the nucleus N is an automaton, i.e.,
that for every g ∈ N and every x ∈ X we have g|x ∈ N . Hence it makes sense to
talk about the Moore diagram of the nucleus, which we will use in several cases.
See the diagram of the nucleus of the adding machine action on Figure 2.

3.2. Limit G-space XG. Let X be a locally compact metrizable topological space.
A right action of a group G on X by homeomorphisms is said to be proper if for
any compact set K ⊂ X the set of elements g ∈ G such that K · g ∩K 6= ∅ is finite.
The action is said to be co-compact if there is a compact subset T ⊂ X such that⋃

g∈G T · g = X .
Let M be a permutational G-bimodule and let X be a right G-space. Then the

tensor product X ⊗M is defined as the quotient of the set X ×M by the equivalence
relation

ξ ⊗ g · x = ξ · g ⊗ x.

If X is a topological space, then X ⊗M is also a topological space with the quotient
topology, where the topology on X × M is the direct product topology of X with
the discrete set M.

Note that X ⊗ M is also a right G-space with respect to the action

(ξ ⊗ x) · g = ξ ⊗ (x · g).

Definition 16. A right G-space X is said to be M-self-similar if there exists a
homeomorphism Φ : X ⊗ M −→ X such that

Φ(ξ · g) = Φ(ξ) · g

for all ξ ∈ X ⊗ M and g ∈ G.

If we have fixed a self-similarity Φ : X ⊗ M −→ X , then we will just right ξ ⊗ x
instead of Φ(ξ ⊗ x) for ξ ∈ X and x ∈ M.

We can iterate the self-similarity and define ξ ⊗ v for all ξ ∈ X and v ∈ M⊗n

inductively by the rule
ξ ⊗ (v ⊗ x) = (ξ ⊗ v) ⊗ x.

This gives a well defined M⊗n-self-similarity on X .
Consequently, a self-similarity is an action of the tensor semigroup M∗ on X by

surjective continuous maps. An arbitrary action will induce a continuous map from
X ⊗ M to X . If this map is a homeomorphism, then this action is a self-similarity.

We need two more notions to define contracting self-similarity.

Definition 17. Let X be a right G-space. A relation R ⊂ X × X is called bounded
if there exists a compact set K ⊂ X × X such that R ⊂

⋃
g∈G K · g, where G acts

on X × X by the diagonal action.
A neighborhood of the diagonal U ⊂ X × X is called uniform if it contains a

G-invariant open neighborhood of the diagonal, where again G acts on X × X by
the diagonal action.

The following theorem is proved in [Nek05] (Theorem 3.4.13).



SYMBOLIC DYNAMICS AND SELF-SIMILAR GROUPS 17

Theorem 3.1. Let M be a hyperbolic G-bimodule. Then there exists a proper
co-compact locally compact Hausdorff right G-space XG and a contracting self-
similarity Φ : X ⊗ M −→ X , i.e., such self-similarity that for any uniform neigh-
borhood of diagonal U and for any bounded relation R there exists n such that
(ξ1 ⊗ v, ξ2 ⊗ v) ∈ U for all (ξ1, ξ2) ∈ R and all v ∈ M⊗m for m ≥ n.

Moreover, the G-space X and the self-similarity are unique in the sense that
if X ′ is another such space with a contracting self-similarity, then there exists a
homeomorphism F : X −→ X ′ such that

F (ξ · g) = F (ξ) · g, F (ξ ⊗ x) = F (ξ) ⊗ x

for all ξ ∈ X , g ∈ G and x ∈ M.

The unique self-similar G-space X from the theorem is called the limit G-space
and is denoted XG.

3.3. Example: the adding machine. Consider the adding machine action of
Z ∼= 〈a〉 given by the recursion

φ(a) = σ(1, a).

The self-similarity bimodule M = {x · an : x = 0 , 1 , n ∈ Z} is defined by the
relations

a · 0 = 1 , a · 1 = 0 · a.

Consider the space R with the natural (right) action of Z on it:

ξ · an = ξ + n.

Then R is a proper co-compact 〈a〉-space.
Set

ξ ⊗ 0 = ξ/2, ξ ⊗ 1 = (ξ + 1)/2

and extend it to the whole self-similarity bimodule M in the only possible way:

ξ ⊗ 0 · an = ξ/2 + n, ξ ⊗ 1 · an = (ξ + 1)/2 + n.

It is easy to see that this gives an M-self-similarity structure on R:

(ξ · a) ⊗ 0 = (ξ + 1)/2 = ξ ⊗ 1 · a0,

(ξ · a) ⊗ 1 = ξ/2 + 1 = ξ ⊗ 0 · a.

Let x1x2 . . . xk · an for xi ∈ {0 , 1} and n ∈ Z be an arbitrary element of M⊗k.
Then

(2) ξ ⊗ x1 . . . xk · an = ((ξ + x1)/2 + · · · + xk)/2 + n =
ξ

2k +
x1

2k + · · · +
xk

2
+ n,

hence

ξ1 ⊗ x1 . . . xk · an − ξ2 ⊗ x1 . . . xk · an =
ξ1 − ξ2

2k ,

and the self-similarity is contracting.
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3.4. Symbolic presentation of XG. Theorem 3.1 is proved in [Nek05] by con-
structing the limit space XG explicitly as the infinite tensor product M⊗−ω =
. . .⊗ M ⊗ M in the following way.

Let us denote, for a set A, by A−ω the set of sequences (. . . , a2, a1) of elements
of A.

Definition 18. Let
Ω =

⋃

A⊂M, |A|<∞

A−ω ⊂ M−ω

with the topology of the inductive limit of the direct product topologies on A−ω. We
say that a sequence (. . . , x2, x1) ∈ Ω is asymptotically equivalent to (. . . , y2, y1) ∈ Ω
if there exists a finite set N ⊂ G and a sequence gk ∈ N such that

gk · xk ⊗ · · · ⊗ x2 ⊗ x1 = yk ⊗ · · · ⊗ y2 ⊗ y1

in M⊗k for all k ≥ 1.

It is proved in [Nek05] that the limit space XG is homeomorphic to the quotient
of Ω by the asymptotic equivalence relation. The point of XG represented by a
sequence (. . . , x2, x1) ∈ Ω is denoted . . .⊗x2 ⊗x1 or . . . x2x1. It is uniquely defined
as the limit

(3) . . .⊗ x2 ⊗ x1 = lim
n→∞

ξ ⊗ xn ⊗ · · · ⊗ x1,

where ξ ∈ XG is an arbitrary point.
The action of G and the self-similarity on XG are given then by natural rules

(4) (. . .⊗ x2 ⊗ x1) · g = . . .⊗ x2 ⊗ x1 · g, (. . .⊗ x2 ⊗ x1) ⊗ x = . . .⊗ x2 ⊗ x1 ⊗ x.

It is also proved that the set X−ω ·G ⊂ Ω of sequences of the form . . .⊗x2 ⊗x1 ·g,
for xi ∈ X and g ∈ G, intersects every asymptotic equivalence class and hence the
space XG is homeomorphic to the quotient of X−ω ·G by the asymptotic equivalence
relation. Note that the set X−ω ·G is invariant under the action of the semigroup
M∗ given in (4).

The asymptotic equivalence relation on X−ω ·G is described in very simple terms
by the following proposition, also proved in [Nek05] (Proposition 3.2.6).

Proposition 3.2. Let X be a basis of a hyperbolic bimodule M and let N be the
nucleus of the self-similar group (G,X).

Two sequences . . . x2x1 ·g and . . . y2y1 ·h ∈ X−ω ·G are asymptotically equivalent
if and only if there exists a directed path . . . e2e1 in the Moore diagram of N such
that the arrow ei is labeled by (xi, yi) and the arrow e1 ends in hg−1.

Example. Consider the case of the adding machine action. We have seen in 3.3
that the limit G-space of the adding machine action is R with the natural action
of Z ∼= 〈a〉. It follows from (2) and (3) that a sequence . . . x2x1 · an represents the
point

n+
∞∑

k=1

xk

2k ,

i.e., the real number which is represented by the binary fraction n.x1x2 . . ..
The form of nucleus of the adding machine action (shown on Figure 2) implies

(by Proposition 3.2) that two sequences . . . x2x1 · an and . . . y2y1 · am represent
the same point of the limit space if and only if they are either equal, or of the
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Figure 2. Nucleus of the adding machine action

form . . . 0001xk . . . x1.n and . . . 1110xk . . . x1.n, or of the form . . . 000.(n + 1) and
. . . 111.n. But this is the usual identification rule of dyadic reals.

3.5. The limit dynamical system. The quotient XG/G of the limit G-space XG
by the action of G is called the limit space of G and is denoted JG. The action
of G on XG is not free (though proper), hence it is natural to consider JG as an
orbispace.

If we fix a basis X of the self-similarity bimodule M = X · G, then we get a
symbolic presentation of JG defined in the following way (see Proposition 3.2).

Proposition 3.3. Let us say that sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymp-
totically equivalent if there exists a finite set N ⊂ G and a sequence gk ∈ N such
that

gk(xk . . . x1) = yk . . . y1

for all k ≥ 1.
Then the limit space JG is homeomorphic to the quotient of the space X−ω by

the asymptotic equivalence relation.
Sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically equivalent if and only if

there exists a sequence hk of the elements of the nucleus of G such that hk · xk =
yk · hk−1 for all k ≥ 1.

The last paragraph of Proposition 3.3 can be formulated in the following way.

Corollary 3.4. Sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically equivalent if
and only if there exists a directed path . . . e2e1 in the Moore diagram of the nucleus
N of G such that the arrow ek is labeled by (xk, yk) for every k.

It is easy to see that the asymptotic equivalence relation on X−ω is invariant
under the shift

. . . x2x1 7→ . . . x3x2,

hence the shift induces a continuous map s : JG −→ JG. We call the pair (JG, s)
the limit dynamical system of the group G.

The limit dynamical system (JG, s) does not depend on the choice of the basis
X and can be defined as the projection under the natural map XG −→ JG of the
correspondence

ξ ⊗ x 7→ ξ

on XG, where x ∈ M and ξ ∈ XG.
Let us show that the projection is a well defined map. Suppose that ξ1 ⊗ x1 and

ξ2 ⊗ x2 belong to one G-orbit, i.e., that ξ1 ⊗ x1 = ξ2 ⊗ x2 · g for some g ∈ G. This
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means (by the definition of a tensor product) that there exists h ∈ G such that
ξ1 = ξ2 · h and h · x1 = x2 · g. Hence, ξ1 and ξ2 belong to one G-orbit and the
correspondence ξ ⊗ x 7→ ξ is projected onto a well defined self-map of JG.

Example. It follows from the description of the limit space R of the adding machine
action and its self-similarity that the limit dynamical system of the adding machine
is the circle R/Z together with the double self-covering s : x 7→ 2x (mod 1).

3.6. Functoriality. Let us show that both constructions of the limit G-space XG
and of the limit dynamical system (JG, s) are functors in the respective categories
(of right G-spaces and dynamical systems).

We say that a map f : X1 −→ X2 from a G1-space to a G2-space is equivariant
with respect to a homomorphism φ : G1 −→ G2 if f(ξ · g) = f(ξ) · φ(g) for all
g ∈ G1 and ξ ∈ X1.

Proposition 3.5. Let F : (G1,M1) −→ (G2,M2) be a morphism of hyperbolic
bimodules. Then the map

. . .⊗ x2 ⊗ x1 −→ . . .⊗ F (x2) ⊗ F (x1)

induces a well defined continuous map XF : XG1 −→ XG2 equivariant with respect
to the homomorphism F⊗0 : G1 −→ G2.

The map XF induces a well defined continuous map JF : JG1 −→ JG2 which
agrees with the limit dynamical systems (JG1 , s) and (JG2 , s), i.e., is such that the
diagram

JG1

s−→ JG1yJF

yJF

JG2

s−→ JG2

is commutative.
The maps F 7→ XF and F 7→ JF are functors from the category of contracting

self-similar groups to the categories of right G-spaces (and equivariant maps) and
dynamical systems (and semiconjugacies), respectively.

The following is also straightforward.

Proposition 3.6. If the morphism F : (G1,M1) −→ (G2,M2) induces a surjective
map M1/G1 −→ M2/G2 of the sets of right orbits, then the map JF : JG1 −→ JG2

is surjective.

Proposition 3.7. Let F : (G,M) −→ (G/K,M/K) be the faithful quotient map.
Then JF : JG −→ JG/K is a topological conjugacy.

The last statement means that if we restrict ourselves only to faithful contracting
groups, then we do not make the class of their limit dynamical systems smaller.

3.7. Self-similar subgroups. Particularly interesting and easy to define are the
morphisms coming from self-similar inclusions

Definition 19. Let (G,X) be a self-similar group. Let Y ⊆ X be an arbitrary
subset. A subgroup H ≤ G is said to be self-similar on the alphabet Y if Y is
H-invariant and for all h ∈ H and y ∈ Y we have h|y ∈ H . If H is self-similar on
X, then we just call it self-similar.
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If H is self-similar on Y, then the subset Y · H ⊂ X · G is the self-similarity
H-bimodule and the pair of inclusions H ↪→ G and Y · H ↪→ X · G is a morphism
from (H,Y ·H) to (G,X ·G).

It follows from Proposition 2.16 that this is the form of all morphisms of faithful
self-similar groups which induce injective maps of the right orbits (of the alphabets).

The next proposition follows directly from the definition of the asymptotic equiv-
alence relation on X−ω.

Proposition 3.8. Let (G,X) be a self-similar group generated by a finite set S and
suppose that H ≤ G is a self-similar subgroup generated by a finite set S1 with the
property that for every g ∈ S and v ∈ X∗ there exists h ∈ S1 such that g(v) = h(v).
Then the inclusion H ↪→ G induces a topological conjugacy of the limit dynamical
systems (JH , s) and (JG, s).

Note, however, that the limit dynamical systems of H and G will be different, if
seen as partial self-coverings of orbispaces.

3.8. Finite extensions. Let (G,X) be a contracting self-similar group and let H
be a self-similar subgroup (i.e., h|x ∈ H for every h ∈ H and every x ∈ X). Then the
embedding X ·H ↪→ X ·G is a morphism of bimodules and we get an H-equivariant
continuous map F : XH −→ XG, as before.

Note that XG is also a proper H-space, since H is a subgroup of G. If H has
finite index in G, then XG is also co-compact with respect to the action of H . The
only possibly missing condition of Theorem 3.1 for XG to be the limit space of H
(and hence for F to be a homeomorphism) is H-self-similarity of XG.

Just restricting the G-self-similarity of XG onto X ·H we get a collection of maps
ξ 7→ ξ ⊗ x for x ∈ X ·H which satisfy the necessary compatibility conditions with
the action of H . However, since H is only a subgroup of G, it may happen that
the tensor product XG ⊗H (X ·H) is different from XG.

Sufficient conditions for XG to be H-self-similar are given in the following theo-
rem.

Theorem 3.9. Suppose that a self-similar subgroup H of a contracting group (G,X)
has finite index in G, the self-similar groups (G,X) and (H,X) are self-replicating
(see Definition 5) and g · x = x for g ∈ G and x ∈ X implies that g ∈ H. Then the
map XH −→ XG induced by the embedding H < G is a homeomorphism.

The proof of this theorem is the same as the proof of Theorem 3.7.1 (2) of [Nek05].
The last condition of Theorem 3.9 is satisfied, for instance, if the left action of G

on X ·G is free (i.e., if the associated virtual endomorphism is injective, see below).

Example. Another example when the conditions of Theorem 3.9 are satisfied is
the case of a pull-back p′ : M′

1 −→ M′ of a partial self-covering p : M1 −→ M
by a finite covering F : M′ −→ M of M by connected space M′. Then F∗ maps
π1(M′, t) into a subgroup of finite index of π1(M, F (t)). If we choose a basis
X = {`i} of Mp′,t, then {F (`i)} is a basis of Mp,F (t), which can be identified with
X. We get then a finite-index self-similar subgroup F∗(π1(M′, t)) of π1(M, F (t)).

Suppose that γ · ` = ` in Mp,F (t) for γ ∈ π1(M, F (t)). If γ does not belong to
F∗(π1(M′, t)), then the preimage F−1(γ)t of γ under F , starting at t does not end
in t, hence the end of any p′-preimage of F−1(γ)t does not belong to p′−1(t). But
this contradicts to the fact that ` and γ · ` are homotopic.
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Figure 3. Self-similarity graph of the adding machine

3.9. Limit spaces of the iterated monodromy groups. It is proved in [Nek05]
that if a partial self-covering f : M1 −→ M is expanding on a neighborhood of
its Julia set Jf , then the iterated monodromy group is contracting and the limit
dynamical system (JIMG(f), s) is topologically conjugate to the system (Jf , f).

In particular, if f is a post-critically finite rational function, then we can look at
f as at a partial self-covering f : Ĉ \ f−1(P ) −→ Ĉ \P , where P is the post-critical
set of f . Then the mentioned general theorem (in the orbispace setting) implies
that IMG (f) is contracting and that its limit dynamical system is topologically
conjugate to the action of f on its Julia set.

3.10. The limit space JG as a hyperbolic boundary. Let X be a basis of
a hyperbolic G-bimodule M and suppose that G is generated by a finite set S.
Then the tensor semigroup M∗ is generated by the set S ∪ X. Let ΓS,X be the left
Cayley graph of M∗, i.e., the graph with the set of vertices M∗ where a vertex v
is connected to the vertices of the form g · v for g ∈ S (horizontal edges) and the
vertices x · v = x⊗ v for x ∈ X (vertical edges).

The group G acts by automorphisms on the left Cayley graph ΓS,X by the right
multiplication. The self-similarity graph is the quotient ΓS,X/G of the Cayley graph
of M∗ by this action.

It is proved in [Nek05] that the self-similarity graph is Gromov-hyperbolic and
that its hyperbolic boundary is homeomorphic to the limit space JG. See also the
paper [Pil05], where another proof of this result is given.

See, for instance, a part of the self-similarity graph for the binary adding machine
action on Figure 3.

4. Abelian groups

4.1. Virtual endomorphisms. Let (G,M) be a d-fold covering bimodule and
suppose that the left action of G on the set of the right orbits M/G is transitive
(it is equivalent to the condition that for every x, y ∈ M there exist g, h ∈ G such
that x = g · y · h). Then the bimodule M can be reconstructed from the associated
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virtual endomorphism, which is defined in the following way. Fix x ∈ M and let
Gx be the subgroup of elements g ∈ G such that g · x = x · h for some h ∈ G.
The subgroup Gx has index d in G and the map φ : g 7→ h is a homomorphism
φ : Gx −→ G called the virtual endomorphism associated to the bimodule (and the
element x).

The bimodule M is isomorphic to the bimodule φ(G)G of formal expressions
of the form φ(g1)g2, where φ(g1)g2 is considered to be equal to φ(h1)h2 if h−1

1 g1
belongs to the domain Gx of φ and

φ(h−1
1 g1) = h2g

−1
2 .

The left and right actions of G on the set φ(G)G are given by

h · φ(g1)g2 = φ(hg1)g2, φ(g1)g2 · h = φ(g1)g2h.

The isomorphism between the bimodules M and φ(G)G is given by the map

g1 · x · g2 7→ φ(g1)g2.

A convenient way to interpret the bimodule φ(G)G is to consider it as a set of
partially defined transformations of the group G, where φ(g1)g2 is identified with
the “affine” transformation

g 7→ φ(gg1)g2.

Then the left and the right actions of G on φ(G)G coincide with the pre- and
post-compositions, respectively, with the right action of G on itself.

Let us apply this theory to the case of free abelian groups Zn. A virtual endo-
morphism φ of Zn is a homomorphism from a subgroup of finite index of Zn into
Zn, hence it can be extended to a linear operator A on Qn. Then the associated
bimodule is isomorphic to the set of the affine transformations of the form

~x 7→ A(~x + g1) + g2,

for g1, g2 ∈ Zn, where Zn acts on them by pre- and post-composition with transla-
tions by integral vectors.

In the case when the action is self-replicating (i.e., if the virtual endomorphism
is onto), every element of the bimodule can be written in the form

~x 7→ A(~x + g)

for some g ∈ Zn.
It is proved in [NS04] (see also [Nek05] Proposition 2.9.2) that the self-similar

action of Zn associated with a virtual endomorphism A is faithful if and only if no
eigenvalue of A is an algebraic integer. In particular, A is invertible if the action is
faithful.

4.2. A-adic numeration systems. Let us fix a faithful self-replicating (see Defi-
nition 5) action of Zn. Let A be the matrix of the associated virtual endomorphism.
Then A−1 is a matrix with integral entries. The domain of the virtual endomor-
phism is the subgroup A−1(Zn), which has index detA−1 in Zn.

Note that affine maps A(~x+ g1) and A(~x+ g2) belong to one right orbit if there
exists g ∈ Zn such that A(~x+g1 +A−1(g)) = A(~x+g2), i.e., when g1 and g2 belong
to one coset modulo A−1(Zn). Consequently, a set {A(~x + gi}i=1,...,d is a basis of
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the self-similarity bimodule if and only if the set {gi}i=1,...,d is a coset transversal
of Zn modulo A−1(Zn), i.e., if and only if

Zn =
⊔

i=1,...,d

A−1(Zn) + gi.

We can interpret the set {gi}i=1,...,d as a set of “digits” of an “A-adic” numer-
ation system on Zn. Namely, every element of Zn can be uniquely written as a
formal sum

(5) g = gi0 +A−1(gi1 ) +A−2(gi2 ) + · · · ,

where gi0 is uniquely defined by the condition g − gi0 ∈ A−1(Zn), the digit gi1 is
determined by the condition A(g − gi0) − gi1 ∈ A−1(Zn), etc.

The set of all such formal series
∑∞

k=0 A
−k(gik ) is a profinite abelian group

defined as the completion of Zn with respect to the chain of finite index subgroups
A−k(Zn). The group Zn acts on it in the natural way and this action is conjugate to
the associated action of Zn on the boundary of the tree in the natural way (through
the homeomorphism mapping the sum (5) to the sequence x1x2 . . ., where xk is the
element A(~x + gik ) of the self-similarity bimodule). See more detail in [NS04]
and [Nek05].

4.3. Example: a numeration system on Z[i]. Consider Z2, identified with the
additive group Z[i] of Gaussian integers. Take the linear map A : z 7→ z/(1 − i) =

z(1 + i)/2. It is given by the matrix
(

1/2 −1/2
1/2 1/2

)
. Since the determinant of

this matrix (i.e., square of modulus of (1 + i)/2) is equal to 1/2, the domain of A
has index 2 in Z2 (it is the subgroup of vectors with even sum of coordinates).

Take the coset transversal {0, 1} of A−1(Z[i]) in Z[i]. Let us also denote the
corresponding elements A(z) and A(z+1) of the bimodule by 0 and 1 , respectively.
Let us denote by u and v the generators 1 and i of Z[i], seen as affine maps z·u = z+1
and z · v = z + i. Then we have the following relations in the bimodule of affine
transformations A(z + a):

z · (u · 0 ) = A(z + 1) = z · 1 ,
z · (u · 1 ) = A(z + 2) = A(z) + (1 + i) = z · (0 · uv)

and

z · (v · 0 ) = A(z + i) = A(z + 1) − 1 = z · (1 · u−1),
z · (v · 1 ) = A(z + 1 + i) = A(z) + i = z · (0 · v),

hence the self-similarity bimodule is given by the relations

u · 0 = 1 , u · 1 = 0 · uv

v · 0 = 1 · u−1, v · 1 = 0 · v,

and the associated action of Z[i] is the self-similar group generated by

u = σ(1, uv), v = σ(u−1, v).

Here and in the sequel we identify the group with its image under the wreath
recursion, so that we write u = σ(1, uv) instead of ψ(u) = σ(1, uv) for the wreath
recursion ψ.
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Note that if you are given the above recursion, then it is easy to reconstruct the
virtual endomorphism A. First, check that u and v commute. Then note that the
stabilizer of the first level of the tree is generated by uv and uv−1 (since the group
is abelian), which are given by

uv = (v, v), uv−1 = (u, u).

We see that restriction of the action of the stabilizer on the subtrees of the first
level is a homomorphism acting by (in the additive notation)

u+ v 7→ v, u− v 7→ u.

Thus, it is the linear map

u 7→ (u+ v)/2, v 7→ (−u+ v)/2.

Since we have chosen the coset representatives {0, 1}, this self-similar action of
Z[i] describes addition in the “binary” base (1− i) numeration system on Z[i]. This
system represents the Gaussian integers as sums a0 + a1(1 − i) + a2(1 − i)2 + · · · ,
where ai ∈ {0, 1}.

4.4. Limit spaces of abelian groups. It is proved in Proposition 2.11.11 of [Nek05]
that a finitely generated self-similar group G acting level-transitively on X∗ is con-
tracting if and only if the spectral radius of the associated virtual endomorphism φ
is less than one. Here the spectral radius is defined as

r(φ) = lim sup
n→∞

n

√

lim sup
g∈Dom φn,l(g)→∞

l(φn(g))
l(g)

,

where l(g) denotes the length of a group element with respect to some fixed finite
generating set of G.

This implies that a self-similar action of Zn is contracting if and only if the
associated virtual endomorphism is a contracting linear map (i.e., its usual spectral
radius is less than one).

For instance, the action associated with the binary base (1−i) numeration system
on Z[i] (see the previous subsection) is contracting.

The following theorem is then straightforward.

Theorem 4.1. Let (Zn,X) be a contracting self-replicating action and let A be
the associated virtual endomorphism. Then the limit Zn-space XZn is Rn with the
natural action of Zn by translations. The self-similarity structure is given by

ξ ⊗ (A(z + a)) = A(ξ + a),

where A(z+a) is an element of the self-similarity bimodule identified with an affine
map, as before.

Let g1, . . . , gd be the set of digits defining the basis X = {xi = A(~x+ gi)}i=1,...,d
of the self-similarity bimodule, as in 4.2. Then a sequence . . . xi2xi1 ·g corresponds,
by (3) and Theorem 4.1, to the vector

g +A(gi1 ) +A2(gi2) +A3(gi3 ) + · · · ,

which is convergent in Rn, since A is contracting.
In this way the A-adic numeration is extended to Rn, i.e., to the limit space XZn ,

if the self-similar action is contracting (and self-replicating).
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4.5. Tiles. Let (G,X) be any contracting group and let XG be its limit G-space.
We know that XG is a quotient of the space X−ω ·G by the asymptotic equivalence
relation.

The image of the set X−ω · 1 in XG is called the digit tile, or the set of fractions
and is denoted T .

For instance, if G is the free abelian group Zn and the action is self-replicating,
then the set of fractions is equal to the set

A(gi1 ) +A2(gi2 ) +A3(gi3 ) + · · · ,

where A is the linear map defining the associated virtual endomorphism and gi are
the digits of the associated numeration system. Hence is the term set of fractions.

The digit tiles of abelian groups is a classical object studied by many mathe-
maticians (see, for instance [Thu89, Ban91, Ken92, Vin95, Vin00, BJ99] and bibli-
ography therein).

For any contracting action (G,X) we have

XG =
⋃

g∈G

T · g, T =
⋃

x∈X

T ⊗ x.

Thus, the images T · g of the tile by the action of G cover the space XG and the
tile T is a union of the “similar” tiles T ⊗ x.

If v · g ∈ Xn ·G is an element of M⊗n, then the set T ⊗ v · g is a tile of nth level.
The image of T ⊗ v · g in JG is denoted Tv (it obviously does not depend on g).

If for every g ∈ G there exists v ∈ X∗ such that g|v = 1, then two tiles T · g1 and
T · g2 have disjoint interiors for g1 6= g2 and every tile is the closure of its interior.
Then the sets Tx, for x ∈ X form a Markov partition of the limit dynamical system,
i.e.,

s(Tx) = JG =
⋃

x∈X

Tx.

The next theorem shows a relation between the structure of the nucleus and the
tiles. The proof is given in Section 3.3 of [Nek05].

Theorem 4.2. Let (G,X) be a contracting self-similar action and let N be its
nucleus. Then

(1) The tile T is homeomorphic to the quotient of the space X−ω by the equiva-
lence relation which identifies two sequences . . . x2x1, . . . y2y1 ∈ X−ω if and
only if there exists a direct path . . . e2e1 in the Moore diagram of N ending
in the trivial state 1 and such that the arrow ei is labeled by (xi, yi).

(2) Two tiles T ⊗ v1 · g1 and T ⊗ v2 · g2 of nth level have common points if and
only if there exists g ∈ N such that g · v1 · g1 = v2 · g2.

(3) Two tiles Tv1 and Tv2 have common points if and only if there exists g ∈ N
such that g(v1) = v2.

Definition 20. Let G be a group acting on a set M and let S = S−1 be a finite
generating set of G. Then the Schreier graph of the action is the graph with the
set of vertices M in which two vertices v1, v2 are adjacent if there exists s ∈ S such
that s(v1) = v2.

Then the last statement of Theorem 4.2 says that adjacency of the nth level tiles
Tv coincides with the Schreier graph of the action of the group 〈N 〉 on Xn. If the
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Figure 4. Twin dragon

action (G,X) is self-replicating and the group G is level-transitive, then G = 〈N 〉
and the adjacency graphs of tiles are the Schreier graphs of the group G itself.

Note that the set of horizontal edges of the self-similarity graph constructed
in 3.10 is the union of the Schreier graphs of the action of G on the levels Xn of the
tree X∗.

4.6. Twin dragon. Consider again the numeration system on Z[i] with the basis
1 − i and digits 0 and 1, as in 4.3. We have seen that the corresponding self-similar
group is generated by u = σ(1, uv) and v = σ(u−1, v).

The nucleus of the action consists of 7 elements (in the multiplicative notation):

N =
{

1 = (1, 1),

u = σ(1, uv), v = σ(u−1, v),

u−1 = σ(u−1v−1, 1), v−1 = σ(v−1, u),

uv = (v, v), u−1v−1 = (v−1, v−1).
}

In order to prove this, consider the elements of the set N · {u, v, u−1, v−1} \ N :

uv−1 = (u, u), vu−1 = (u−1, u−1),

u2 = (uv, uv), v2 = (vu−1, vu−1),

uv2 = σ(vu−1, v2), vu2 = σ(v, uv2),

and see that their restrictions in words of length 2 belong to N .
By the general theory, the limit space XZ[i] is the plane C with the natural action

of Z[i] on it and the self-similarity

z ⊗ 0 = z/(1 − i), z ⊗ 1 = (z + 1)/(1 − i),

thus the point of C corresponding to . . . x2x1 · g ∈ X−ω · Z[i] is equal to

g +
x1

1 − i
+

x2

(1 − i)2 +
x3

(1 − i)2 + · · · .

The set of fraction of this action is considered in [Knu69]. It is called the twin
dragon, since it is a union of two copies of the “dragon curve” (also called the
Highway dragon). It is shown on Figure 4.

A part of the tiling of C by the shifts of the twin dragon is shown on Figure 5.
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Figure 5. Twin dragon tiling

The two shaded tiles are the tiles T and T + 1. Their union is mapped onto T
by the map z 7→ z/(1 − i) (which illustrates the general fact T =

⋃
x∈X T ⊗x). The

six arrows shown on the figure show the action of the six non-trivial elements of
the nucleus N . Note that they map the tile to all its neighbors (see Theorem 4.2).

4.7. A non-self-replicating case (base 1.5 numeration system). Consider
the virtual endomorphism n 7→ 2n/3 of Z. Its domain is the subgroup 3Z and it is
contracting, hence the associated action of Z is contracting.

The self-similarity bimodule M is the set of affine functions of the form 2(x +
n)/3+m for n,m ∈ Z. It has three right orbits {2x/3+m}, {2(x+1)/3+m}, {2(x+
2)/3} and two left orbits {2(x+ n)/3} and {2(x+ n)/3 + 1}.

If we choose the coset transversal 0, 1, 2, then the action of the generator of Z
(denoted here by a) is defined by

(6) a · 0 = 1 , a · 1 = 2 , a · 2 = 0 · a2,

or, in terms of the wreath recursion

a = σ(1, 1, a2),

where σ = (012 ) is the cycle. Here 0 , 1 and 2 are the elements (2n+0)/3, (2n+1)/3
and (2n+2)/3 of the bimodule M, corresponding to the elements 0, 1, 2 of the coset
transversal.

Since we have more than one left orbit, we can not conclude that the correspond-
ing limit space is R. Actually, it is easy to see that R (with respect to the natural
action of Z) can not be made self-similar, since the space R ⊗ M has two connected
components corresponding to two left orbits of M. (If ξ1 ⊗x1 and ξ2 ⊗x2 are equal,
then x1 and x2 belong to one left orbit.)

Proposition 4.3. The limit space XZ of the action (6) is the direct product R×Z2
of the real line with the ring of dyadic integers with the diagonal action of Z

(ξ, ζ) · an = (ξ + n, ζ + n)
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and the self-similarity
(ξ, ζ) ⊗ 0 = (2ξ/3, 2ζ/3).

Recall that 2/3 = 2+
∑∞

k=1 4k is an element of the ring Z2, hence we can multiply
the elements of Z2 by 2/3.

Proof. It is easy to check that the Z-space R × Z2 is proper and co-compact. The
quotient (R × Z2)/Z is the mapping torus of the adding machine ζ 7→ ζ + 1 on Z2.
It remains to prove that it is self-similar and that the self-similarity is contracting.

We have to prove that the map

Φ((ξ, ζ) ⊗ (2(x+ n)/3 +m)) = ((2ξ + n)/3 +m, (2ζ + n)/3 +m)

induces a homeomorphism of the Z-space R × Z2 with the tensor product (R ×
Z2) ⊗ M. It is sufficient to prove that it is a bijection (since the spaces are locally
compact and metrizable). It is obviously well defined and surjective.

Suppose that ((2ξ1 +n1)/3+m1, (2ζ1 +n1)/3+m1) = ((2ξ2 +n2)/3+m2, (2ζ2 +
n2)/3 + m2). We get that 2(ζ1 − ζ2) = n2 + 3m2 − n1 − 3m1 in Z2, hence n2 +
3m2 − n1 − 3m1 ∈ Z is even. Let n = (n2 + 3m2 − n1 − 3m1)/2. Then ζ1 = ζ2 + n
and ξ1 = ξ2 + n. We also have

2(x+ n) + n1

3
+m1 =

2x+ n2 + 3m2 − n1 − 3m1 + n1

3
+m1 =

2x+ n2

3
+m2,

hence (ξ1, ζ1) ⊗ ((2x+ n1)/3 +m1) = (ξ2, ζ2) ⊗ ((2x+ n2)/3 +m2) and the map Φ
is injective.

The map ξ 7→ 2ξ/3 is contracting on R, since |2/3| < 1. The map ζ 7→ 2ζ/3 is
also contracting on Z2, since 2/3 is even. This easily implies that the self-similarity
Φ is contracting. �

The space R × Z2 is a direct product of a line by the Cantor set (see Figure 6).
The group Z acts on R by translation and on Z2 by the action of the binary adding
machine. The fundamental domain of the action is [0, 1] × Z2. We get hence the
following description of the limit space JZ of the “1.5-numeration system”.

Proposition 4.4. The limit space JZ of the action (6) is the dyadic solenoid,
which can be defined as the mapping torus of the binary adding machine, i.e., the
direct product [0, 1] × Z2 in which every point (1, ζ) is identified with (0, ζ + 1). It
is homeomorphic to the inverse limit of the double self-coverings of a circle.

The shift s : JZ −→ JZ acts by the rule

s(ξ, ζ) =
{ ( 3

2ξ,
3
2ζ
)

if ζ is even( 3
2 (ξ − 1), 3

2 (ζ − 1)
)

if ζ is odd,
where the real coordinate is computed modulo 1.

See Figure 6, where the action of Z on the limit Z-space XZ is shown. Here Z
acts by parallel translation.

4.8. Expanding endomorphisms of orbifolds. Let (Zn,X) be a contracting
self-replicating free abelian group and letA be the associated virtual endomorphism.
We assume that the action is faithful, so that A is injective.

Suppose that G is a cocompact proper group of affine transformations of Zn,
whose linear parts commute with A. Then Zn has finite index in G and A induces
a virtual endomorphism of G mapping an affine transformation L(~x) +~v to L(~x) +
A(~v). In this way G is transformed into a self-similar over-group of Zn, whose
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Figure 6. The limit Z-space of the numeration system with base 1.5

limit space XG is homeomorphic to Rn with the original action of G on it (by
Theorem 3.9).

Let us illustrate this on several examples, which we will also use later.

4.8.1. Dihedral group. Consider the group D∞ of the affine transformation of R1

of the form x 7→ (−1)kx + n, where n ∈ Z and k ∈ {0, 1}. Consider the virtual
endomorphism n 7→ n/2 of Z, i.e., the binary adding machine action of Z. We know
that the associated Z-bimodule can be identified with the set of affine transforma-
tions of R of the form x 7→ (x + n)/2 for n ∈ Z, i.e., with the set of compositions
of the elements of Z with the transformation x 7→ x/2. Let us extend this to a
D∞-bimodule equal to the set {x 7→ (±x + n)/2} of compositions of elements of
D∞ with x/2. It is easy to see that this is a covering D∞-bimodule.

We have now the freedom to choose a basis of the D∞-bimodule. If we choose
the usual basis {0 , 1} given by x⊗ 0 = x/2 and x⊗ 1 = (x+ 1)/2, then we get the
usual binary adding machine action of Z generated by a = σ(1, a). Let us compute
the recursion defining the element b : x 7→ −x of D∞. We have

x⊗ b · 0 = x · b⊗ 0 − x/2 = x⊗ 0 · b
x⊗ b · 1 = (−x+ 1)/2 = x⊗ 1 · ba,

hence b = (b, ba). Consequently,

a−1b = (1, a−1)σ(b, ba) = σ(a−1b, ba),

and since a−1b = ba, we get that D∞ in this action is generated by the adding
machine a = σ(1, a) and the element ba = c = σ(c, c), changing every letter of a
word.

On the other hand, if we choose the basis {0 , 1} given by x ⊗ 0 = x/2 and
x⊗ 1 = (−x+ 1)/2, then b = (b, c) and

x · c · 0 = (−x+ 1)/2 = x⊗ 1
x · c · 1 = (−(−x+ 1) + 1)/2 = x/2 = x⊗ 0 ,

hence c = σ. This gives another self-similar action of D∞ generated by:

b = (b, c), c = σ.

4.8.2. A Lattès example. Consider, as in 4.3, the group Z2 and the virtual endo-
morphism

A

(
m
n

)
=
(

(m− n)/2
(m+ n)/2

)
.



SYMBOLIC DYNAMICS AND SELF-SIMILAR GROUPS 31

We again interpret Z2 as the additive group of the ring of Gaussian integers Z[i]
and A as multiplication by (1 + i)/2.

Then the limit space of Z[i] is C with the natural action. The associated bimodule
is the set {z 7→ 1+i

2 (z +m+ ni) : m+ ni ∈ Z[i]}.
Consider the groupG of affine transformations of C of the form z 7→ ±z+(m+ni),

and extend the associated bimodule as in the previous example.
If we take the basis given by z⊗ 0 = z 1+i

2 and z⊗ 1 = (z+ 1)1+i
2 , then Z[i] will

be a self-similar subgroup of G. We have computed the respective action in 4.3.
Recall that the generators u : z 7→ z + 1 and v : z 7→ z + i act by the rule

u = σ(1, uv), v = σ(u−1, v).

The element c : z 7→ −z acts by the rule

z ⊗ c · 0 = −z
1 + i

2
= z ⊗ 0 · c

z ⊗ c · 1 = (−z + 1)
1 + i

2
= −(z + 1)

1 + i

2
+ 1 + i = z ⊗ 1 · cuv,

hence c = (c, cuv).
Let us take now the basis z ⊗ 0 = z i+1

2 and z ⊗ 1 = (−z − i) i+1
2 and compute

the recursions for a : z 7→ −z − i, B : z 7→ −z − i + 1, C : z 7→ −z. Note that
CaB : z 7→ −z + 1.

We have

z ⊗ a · 0 = (−z − i)
1 + i

2
= z ⊗ 1

z ⊗ a · 1 = (−(−z − i) − i)
i+ 1

2
= z ⊗ 0 ,

hence a = σ,

z ⊗B · 0 = (−z − i+ 1)
i+ 1

2
= −z

i+ 1
2

+ 1 = z ⊗ 0 · CaB

z ⊗B · 1 = (−(−z − i+ 1) − i)
i+ 1

2
= −(−z − i)

i+ 1
2

− i = z ⊗ 1 · a,

hence B = (CaB, a),

z ⊗ C · 0 = −z
1 + i

2
= z ⊗ 0 · C

z ⊗ C · 1 = (z − i)
i+ 1

2
= −(−z − i)

i+ 1
2

− i+ 1 = z ⊗ 1 ·B,

hence C = (C,B) and the group G is generated by

a = σ

B = (CaB, a)
C = (C,B)

The limit space JG of the group G is the quotient C/G of C by the action of G.
It is homeomorphic to the sphere and as an orbispace it has four singular points
with isotropy groups of order 2 (the images of the points 0, 1/2, i/2 and (1 + i)/2).
The shift s : JG −→ JG is induced by the map A−1 : C −→ C : z 7→ (1− i)z. Hence
it is a two-fold branched self-covering of the sphere. It is holomorphic with respect
to the holomorphic structure on the quotient space C/G (which is well defined
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since G acts properly by biholomorphic automorphisms of C). Consequently, it is
conjugate to a rational function.

The constructed rational function (defined uniquely up to a conjugation by
a Möbius transformation) is a Lattès example (in a slightly generalized sense),
see [Lat18, Mil99].

The quotient map C −→ C/G can be realized as the Weierstrass function

℘(z) =
1
z2 +

∑

ω∈Z[i]

[
1

(z + ω)2 −
1
ω2

]

associated with the lattice Z[i]. Consequently, the rational function conjugate to
s : JG −→ JG can be defined as the function f with the property

℘((1 − i)z) = f(℘(z)).

One can show that f is conjugate to i
2 (z + z−1) (see, for instance, [Mil04]).

4.8.3. Triangle orbifold. Consider the group G of all symmetries of the integral
lattice Z2 < R2. It is the group of the affine transformations of the form ξ 7→
L(ξ) +~v, where ~v ∈ Z2 and L is a linear transformation given by a matrix from the
set {

±
(

1 0
0 1

)
,±
(

−1 0
0 1

)
,±
(

0 1
1 0

)
,±
(

0 −1
1 0

)}
.

Note that this set of matrices forms a group isomorphic to the dihedral group D4
of order 8.

As before, consider the virtual endomorphism of the group G mapping the affine
transformation L(ξ) + ~v to the transformation L(ξ) + A(~v), where A is given by

the matrix
(

1/2 −1/2
1/2 1/2

)
. We have seen in 4.6 that if we take the basis given by

ξ ⊗ 0 = A(ξ) and ξ ⊗ 1 = A

(
ξ +

(
1
0

))
, then the digit tiles of the group G will

coincide with the twin dragon.
It is easy to see that the group G is generated by the reflections

a :
(
x
y

)
7→
(

1 − x
y

)
, b :

(
x
y

)
7→
(
y
x

)
, c :

(
x
y

)
7→
(

x
−y

)

with respect to the sides of the fundamental triangle with vertices
(

0
0

)
,
(

1/2
1/2

)

and
(

1/2
0

)
, see Figure 7.

The group G is given by the presentation

G = 〈a, b, c | a2 = b2 = c2 = (ac)2 = (bc)4 = (ab)4 = 1〉.

Take now the basis of the associated G-bimodule given by
(
x
y

)
⊗ 0 = A

((
x
y

)
· a
)

· b =
(

(1 − x+ y)/2
(1 − x− y)/2

)
,

(
x
y

)
⊗ 1 = A

(
x
y

)
· b =

(
(x+ y)/2
(x− y)/2

)
.

Then ξ ⊗ a · 0 = ξ ⊗ 1 and ξ ⊗ a · 1 = ξ ⊗ 0 , hence a = σ.
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Figure 7. Generators a, b, c

We have
(
x
y

)
⊗ b · 0 =

(
(1 + x− y)/2
(1 − x− y)/2

)
=
(
x
y

)
⊗ 0 · a

(
x
y

)
⊗ b · 1 =

(
(x+ y)/2

(−x+ y)/2

)
=
(
x
y

)
⊗ 1 · c,

hence b = (a, c),
(
x
y

)
⊗ c · 0 =

(
(1 − x− y)/2
(1 − x+ y)/2

)
=
(
x
y

)
⊗ 0 · b,

(
x
y

)
⊗ c · 1 =

(
(x− y)/2
(x+ y)/2

)
=
(
x
y

)
⊗ 1 · b,

hence c = (b, b).
We see that the group G is generated by

a = σ,

b = (a, c),
c = (b, b).

This recursion was considered in [Nek07]. It is proved there that the nucleus of
G is equal to

〈a, b〉 ∪ 〈a, c〉 ∪ 〈b, c〉,
hence has 15 elements. Analysis of the structure of the nucleus shows that the
associated tiling of C = XG is the tiling by the images under the action of G of the
fundamental triangle shown on Figure 7.

The limit space JG of the group G is the quotient C/G, which is an isosce-
les rectangular triangle. The boundary points of the triangle are singular: the
isotropy groups of the internal points of the sides are of order two (corresponding
to reflections), the isotropy group of the vertex of the right angle is isomorphic to
D2 ∼= C2 × C2 and the isotropy groups of the vertices of the acute angles are D4.
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The sift map s : JG −→ JG folds the triangle in two along the bisectrix of
the right angle, stretches by the linear factor of

√
2 and superimposes it with the

original triangle so that (the image of) the point
(

0
0

)
is fixed under s.

5. Complex polynomials

5.1. Carateodori loop. Let f : C −→ C be a degree d polynomial with finite
post-critical set P . Then f is a partial self-covering of C \ P and we can compute
the iterated monodromy group IMG (f) of this self-covering and the associated
bimodule Mf,t.

Let R be the complement of the filled-in Julia set of f (i.e., the basin of infinity).
Then f : R −→ R is a d-fold self-covering. The homotopy type of R is circle and
it is easy to see that the iterated monodromy group of f |R is isomorphic (as a
self-similar group) to the d-adic adding machine.

We get hence a morphism (inclusion) of self-similar groups IMG (f |R) −→ IMG (f)
induced by the inclusion R ↪→ C \ P , since the last inclusion commutes with the
dynamics of f .

On the other hand, the adding machine and IMG (f) are contracting, hence the
morphism IMG (f |R) −→ IMG (f) induces a semiconjugacy of their limit dynamical
systems. The limit dynamical system of the d-adic adding machine is a d-fold self-
covering x 7→ dx (mod 1) of the circle R/Z. The limit dynamical system of IMG (f)
is the action of f on its Julia set Jf .

We get hence a surjective map R : R/Z −→ Jf such that f(R(α)) = R(dα).
This map coincides with the classical Carateodori map (loop) from the circle onto
the Julia set. This map is the boundary of the biholomorphic isomorphism (uni-
formization) from the complement of the unit disc to the complement of the filled-in
Julia set. See Figure 8, where the Carateodori loop around the Julia set of z2 − 1
is depicted. The curves going from the outer circle to the Julia set on the figure
are the images of the rays (of sets of complex numbers having a fixed argument)
under the uniformization map.

The embedding of the d-adic adding machine into the iterated monodromy group
IMG (f) of a polynomial gives a special choice of a basis of the associated bimodule.
For example, one can take the basis of the bimodule associated with the adding
machine action, corresponding to the digits 0, 1, . . . , d−1, i.e., the affine transforma-
tions x/d, (x+1)/d, . . . , (x+d−1)/d. Then the image of this basis in the bimodule
associated to IMG (f) is a convenient choice (see, for instance [BN06c]). In terms
of the polynomial this basis consists of paths from +∞ to its preimages along the
shortest arcs in the positive direction on the circle at infinity. Here we compact-
ify the complex plane by the circle at infinity (for example using the gnomonic
projection, see [Mil04]) and extend naturally the action of the polynomial to this
compactification. This is possible, since a monic polynomial of degree d acts near
infinity as zd.

5.2. Quadratic polynomials. Iterated monodromy groups of post-critically finite
polynomials are described in terms of automata in [Nek05] Section 6.7. We will not
repeat here the construction in full generality, but will only show how the classical
theory of kneading sequences for quadratic polynomials is interpreted in terms
of self-similar groups. This description is a joint work with Laurent Bartholdi
(see [BN06a]).
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Figure 8. Carateodori loop

There are two kinds of self-similar actions (i.e., two choices of a basis of the asso-
ciated permutational bimodule) of the iterated monodromy groups of polynomials,
which are convenient in different situations. The first comes from the canonical
choice of the connecting paths along the circle at infinity. The other is related
to the kneading sequences and gives a particularly nice recurrent relations for the
generators of the group.

5.3. Groups D (θ). Fix some point θ ∈ R/Z of the circle. Consider the doubling
map x 7→ 2x on R/Z. Let P be the orbit of θ under the doubling map. The set P
is finite if and only if the number θ is rational. Every α ∈ R/Z has two preimages
under the doubling map: α/2 and (α+ 1)/2.

For any subset A ⊂ [0, 1) (seen as an oriented subset of the circle R/Z) de-
fine recursively an automorphism γA of the binary tree {0, 1}∗ by the following
conditions

(1) If A = A1 ∪A2, where θ1 < θ2 for all θ1 ∈ A1 and θ2 ∈ A2, then

γA = γA1γA2 .

(2) If θ /∈ A, then
γA = (γA/2, γ(A+1)/2).

(3)
γ{θ} = σ

(
γ−1

(θ/2,(θ+1)/2), γ[θ/2,(θ+1)/2]

)
,

where [a, b] and (a, b) denote the closed and the open interval, respectively.
If G is a profinite group and M ⊂ G is a countable set converging to identity,

then for any linear ordering ≺ of M the product
∏≺

g∈M g taken in the order ≺
makes sense, since modulo any normal open subgroup H CG the product has only
a finite number of non-trivial factors.

Theorem 5.1. The conditions (1)–(3) are consistent and uniquely define the au-
tomorphisms γA of the tree {0, 1}∗.
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Figure 9. External rays

An element γ{α} is non-trivial if and only if α belongs to the orbit P = {2kθ :
k ≥ 0} (mod 1) of θ under the angle doubling map.

For any subset A ⊂ [0, 1) we have

γA =
∏<

α∈P ∩A
γ{α},

where the product is taken in the profinite automorphism group of the binary tree
with respect to the natural ordering of the set A.

Definition 21. The group D (θ) is the group generated by the proper restrictions
of the element γ{θ}, i.e., by the elements γ{θ}|v for non-empty words v.

Let θ ∈ Q/Z ⊂ R/Z be a rational point of the circle. Denote by cθ either the
landing point of the parameter ray Rθ, if the denominator of θ is even (i.e., if θ
is pre-periodic with respect to the angle doubling), or the center of the hyperbolic
component of the Mandelbrot set with the root equal to the landing point of Rθ, if
the denominator of θ is odd (if θ belongs to a cycle of the angle doubling map).

Proof of the following theorem is given in [BN06b].

Theorem 5.2. Suppose that θ ∈ R/Z is rational. Then the group D (θ) is equal
to the self-similar action of IMG

(
z2 + cθ

)
defined by the connecting paths on the

circle at infinity.

Example. Let us compute D (1/3). The parameter ray Rθ lands on the root of
the hyperbolic component with the center c1/3 = −1 (see Figure 9).

The orbit of 1/3 under the angle doubling map is 1/3 7→ 2/3 7→ 1/3, hence the
only non-trivial elements γ{α} are a = γ{1/3} and b = γ{2/3}, so the group D (1/3)
is generated by two elements.

We have
a = γ{1/3} = σ

(
γ−1

(1/6,2/3), γ[1/6,2/3]

)
= σ(a−1, ab)

and
b = γ{2/3} =

(
γ{1/3}, γ{5/6}

)
= (a, 1).

We have D (1/3) = IMG
(
z2 − 1

)
. The generator γ{1/3} is a small loop going in

the positive direction around −1 and connected to the circle at infinity along the
external (dynamical) ray R1/3. Similarly, the element γ{2/3} is the loop around 0
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Figure 10. Automaton generating K (v)

connected to the circle at infinity along the ray R2/3. The rays are connected to
+∞ along the arcs [0, 1/3] and [0, 2/3], respectively.

5.4. Kneading sequences and the groups K (v) and K (u, v). We denote by
K (v), for v = x1x2 . . . xn−1 ∈ {0, 1}∗, the group generated by the elements a1, . . . , an
given by the recursion

a1 = σ(1, an), ai+1 =

{
(ai, 1) if xi = 0,
(1, ai) if xi = 1,

when 1 ≤ i ≤ n− 1.

For a pair of words u = y1 . . . yk and v = x1 . . . xn ∈ X∗ such that yk 6= xn, we
denote by K (u, v) the group generated by the elements b1, . . . bk, a1, . . . , an given
by

b1 = σ, bi+1 =

{
(bi, 1) if yi = 0,
(1, bi) if yi = 1,

when 1 ≤ i ≤ k − 1,

and

a1 =

{
(bk, an) if yk = 0 and xn = 1,
(an, bk) if yk = 1 and xn = 0,

ai+1 =

{
(ai, 1) if xi = 0,
(1, ai) if xi = 1,

when 1 ≤ i ≤ n− 1.
In other terms, the group K (v) is generated by the automaton shown on Fig-

ure 10, and the group K (u, v) is generated by the automaton shown on Figure 11.
In those diagrams, only edges leading to non-trivial states are drawn, a label x
corresponds to (x, x) and the label ∗ corresponds to (1, 0). Black dots correspond
to active states (i.e., to the states acting non-trivially on the first level.

For a given point θ ∈ R/Z the θ-itinerary Iθ(α) of α ∈ R/Z is the sequence
a0a1 . . ., where

ak =






0 if 2kα ∈ S0
1 if 2kα ∈ S1
∗ if 2kα ∈ {θ/2, (θ + 1)/2},

where S0 3 0 and S1 are the two semicircles into which R/Z is divided by the points
θ/2 and (1 + θ)/2.

The itinerary Iθ(θ) is called the kneading sequence of the point θ ∈ R/Z and is
denoted θ̂.
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Figure 11. Automaton generating K (u, v)

If θ is rational with odd denominator, then θ̂ is a sequence of the form (v∗)∞ for
v ∈ {0, 1}∗. Let us denote then K(θ̂) = K (v).

If θ is rational and pre-periodic with respect to the angle doubling map, then θ̂

is of the form u(v)∞. Then we denote K(θ̂) = K (u, v).
The following theorem is proved in [Nek05] (Theorem 6.11.1) and in [BN06a].

Theorem 5.3. Let θ ∈ R/Z be a rational point. Then the group IMG
(
z2 + cθ

)

is isomorphic to the group K(θ̂) and their actions on the respective rooted trees are
conjugate. The dynamical systems

(
Jz2+cθ , z

2 + cθ
)

and
(

JK(θ̂), s
)

are conjugate.

5.5. Abstract tuning. Let v = x1x2 . . . xn ∈ {0, 1}∗ and let a1, a2, . . . , an be the
generators of the group K (v). Let G be an arbitrary self-similar group over the
binary alphabet.

The abstract tuning K (v,G) of K (v) by G is the group generated by n copies
G(i) = {g(i) : g ∈ G} of G acting on the binary tree by the rules:

g(1) =

{
(h′

(n), h
′′
(n)) if g = (h′, h′′) in G

σ(h′
(n), h

′′
(n)) if g = σ(h′, h′′) in G

and

g(i+1) =

{
(g(i), 1) if xi = 0,
(1, g(i)) if xi = 1,

for 1 ≤ i ≤ n− 1.
In other terms, the copy G(i) acts on every beginning of a sequence of the form

(xi−1xi−2 . . . x1)y1Uy2Uy3Uy4 . . . ,

where U = xnxn−1 . . . x1, changing the subsequence y1y2 . . . to its image under the
original action of G.

Note that the abstract tuning of K (v) by the binary adding machine a = σ(1, a)
coincides with K (v). In particular, if G contains the adding machine, then K (v,G)
contains K (v).

Tuning by D (θ) corresponds to the classical (“formal”) tuning procedure, as
described, for example, in [Mil89, Pil03].
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Figure 12. Tuning the rabbit by the basilica

As an example, consider tuning of the “Rabbit” polynomial z2 − c1/7 by z2 − 1,
i.e., tuning K (11) by D (1/3). The group D (1/3) is generated by two elements a, b
given by recursion

a = σ(a−1, ab), b = (a, 1).
Consequently, the group K (11,D (1/3)) is generated by

a1 = σ(a−1
3 , a3b3), b1 = (a3, 1)

and

a2 = (1, a1), b2 = (1, b1).
a3 = (1, a2), b3 = (1, b2)

Let us post-conjugate the wreath recursion by (a3, 1). We get then the wreath
recursion

a1 = σ(1, b3), b1 = (a3, 1),
a2 = (1, a1), b2 = (1, b1),
a3 = (1, a2), b3 = (1, b2),

thus, K (11,D (1/3)) = K (11011). Figure 12 shows the limit space of K (11011)
(in the middle). The left hand side picture shows the Julia set of the “rabbit”
polynomial (i.e., the limit space of K (11)) and the right hand side picture shows
the “basilica”, i.e., the Julia set of z2 −1, which is homeomorphic to the limit space
of K (1) ∼= D (1/3).

To get the middle picture, one has to replace the boundary of every Fatou com-
ponent of the “rabbit” by a copy of “basilica”. On the level of iterated mon-
odromy groups it corresponds to replacing the generators of K (11) by products
a1b1, a2b2, a3b3. Every pair ai, bi generates a group isomorphic to IMG

(
z2 − 1

)
.

Hence, we have replaced cyclic groups 〈a1b1〉, 〈a2b2〉, 〈a3b3〉 (which are self-similar
over subsets of X3) by copies of the Basilica group.

6. Plane-filling curves

6.1. Peano curve. The original paper of Giuseppe Peano [Pea90] is amazingly
close to our approach and can be translated into the language of self-similar groups
in a very straightforward way.
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Here is a piece of his paper with the definition of a continuous map T 7→ (X,Y )
from the segment [0, 1] onto the square [0, 1]2.

Adoptons pour base de numération le nombre 3; appelons chiffre
chacun des nombres 0, 1, 2; et considèrons une suite illimitée de
chiffres a1, a2, . . . que nous écrirons

T = 0, a1a2a3 . . . .

(Pour ce moment, T est seulement une suite de chiffres).
Si a est un chiffre, désignons par ka le chiffre 2 − a, complemen-

taire de a;[. . . ]
Faisons correspondre à la suite T les deux suites

X = 0, b1b2b3 . . . , Y = 0, c1c2c3 . . . ,

oú les chiffres b et c sont donnés par les rélations

b1 = a1, c1 = ka1a2, b2 = ka2a3, c2 = ka1+a3a4, b3 = ka2+a4a5, . . .

bn = ka2+a4+···+a2n−2a2n−1, cn = ka1+a3+···+a2n−1a2n.

[. . . ] On peut aussi écrire ces rélations sous la forme:

a1 = b1, a2 = kb1c1, a3 = kc1b2, a4 = kb1+b2c2, . . . ,

a2n−1 = kc1+c2+···+cn−1bn, a2n = kb1+b2+···+bncn.

After this he shows that the defined map 0.a1a2 . . . 7→ (0.b1b2 . . . ; 0.c1c2 . . .)
agrees with the identifications of ternary expansions of real numbers, from which
it follows easily that this map is continuous. Surjectivity follows directly from the
construction.

The following theorem is essentially just a reformulation of the Peano’s paper.
The only new ingredient is looking at it in terms of the dual picture of self-similar
contracting groups.

Theorem 6.1. Let G be the group generated by the following automorphisms of
the ternary rooted tree {0, 1, 2}∗

B = (012)(1, 1, C),
C = (B,B,B),
k0 = (02)(k1, k1, k1),
k1 = (k0, k0, k0),
A = (012)(k0, k0, A).

Then the limit space of G is homeomorphic to the square [0, 1] × [0, 1]. The cyclic
subgroup 〈A〉 < G is self-similar (after a change of the basis of the self-similarity
bimodule) and the inclusion 〈A〉 < G induces a surjective continuous map from the
circle J〈A〉 onto the square JG.

Proof. Let us identify a sequence b1c1b2c2 . . . ∈ {0, 1, 2}ω with the pair

w = (b1b2 . . . , c1c2 . . .) ∈ {0, 1, 2}ω × {0, 1, 2}ω.

It follows from the definitions that B and k0 act only on the first coordinate of
w and C and k1 act only on the second coordinate. The transformations B and C
act as the usual triadic adding machine on the respective coordinates of w. The



SYMBOLIC DYNAMICS AND SELF-SIMILAR GROUPS 41

actions of k0 and k1 on the respective coordinates of w coincide with the action of
the transformation

k = (02)(k,k,k),

which changes every letter a to 2 − a.
It follows that the group G0 generated by B,C, k0, k1 is isomorphic to the direct

product of two infinite dihedral groups. The map

b1c1b2c2 . . . 7→

(
∞∑

n=1

bn · 3n−1,

∞∑

n=1

cn · 3n−1

)

is a homeomorphism between the boundary of the rooted tree and the direct square
Z2

3 of the ring of triadic integers. It is easy to see that the homeomorphism conju-
gates B,C, k0 and k1 with the affine transformations

(x, y) 7→ (x+ 1, y), (x, y + 1), (−1 − x, y), (x,−1 − y),

respectively (since changing every digit a to 2 − a is equivalent to subtracting the
triadic number from . . . 222 = −1).

It follows now from the general theory that the limit G0-space XG0 is homeo-
morphic to R2 with the right action of the generators given by the same formulae
as their action on Z2

3. A sequence . . . x2y2x1y1 ∈ X−ω encodes the point
(

∞∑

n=1

xn · 3−n,

∞∑

n=1

yn · 3−n

)

∈ R2 = XG0

Consequently, the limit space JG0 is the quotient of the plane by the affine action of
G0 on R2, i.e., a square, which can be identified for instance with the fundamental
square [0, 1/2] × [0, 1/2] of the action.

Let us pass now to a different basis of the self-similarity bimodule. Denote

0̃ = 0, 1̃ = 1 · k0, 2̃ = 2,

i.e., we replace every digit ai by ãi = ai · kai
0 and hence post-conjugate the wreath

recursion by (1, k0, 1).
Then the generator A of G becomes the usual adding machine:

A = (0̃1̃2̃)(1, 1, A).

The cyclic group 〈A〉 is a self-similar subgroup of G, hence the inclusion 〈A〉 < G
induces a surjective continuous map of the limit spaces.

It remains to prove that adding A to the generating set does not change the
limit space, i.e., that the inclusion G0 < G induces a homeomorphism of the limit
spaces.

Let us show that for every n and every v ∈ {0, 1, 2}n the distance between v
and A(v) in the Schreier graph of the action of G1 on {0, 1, 2}n is not more than
2. This will show that the asymptotic equivalences defined by G and G1 coincide.

But it is easy to see from the recursions

Bk1 = (012)(k0, k0, Ck0)
Ck0 = (02)(Bk1, Bk1, Bk1)
A = (012)(k0, k0, A)
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that if v = 22 . . .2︸ ︷︷ ︸
n

u (for n ≥ 0) and the first letter of u is not 2, then

A(v) =
{
Bk1(v) if n is even,
Ck0(v) if n is odd.

Hence the distance between v and A(v) in the Schreier graph of G0 is at most 2. �

Let us look more carefully at the map F : J〈A〉 −→ JG and show that it coincides
with the Peano curve. More precisely, the map F is equal to the composition of the
Peano curve with the map [0, 1]2 −→ [0, 1/2]2 factoring the square by the action
of the Klein’s group generated by reflections with respect to the medians of the
square.

If . . . a3a2a1 ∈ {0, 1, 2}−ω is a sequence representing a point ξ of J〈A〉 (we have
ξ =

∑∞
n=1 an · 3−n ∈ R/Z), then the point F (ξ) is represented in JG0 = JG by the

sequence

(7) . . . a3 · ka3
0 ⊗ a2 · ka2

0 ⊗ a1 · ka1
0 .

Proposition 6.2. The sequence . . . a3 · ka3
0 ⊗ a2 · ka2

0 ⊗ a1 · ka1
0 is equivalent to the

sequence

. . .ka1+a3+···+a2n−1 (a2n) ⊗ ka2+a4+···+a2n−2 (a2n−1) ⊗ . . .

⊗ ka2+a4(a5) ⊗ ka1+a3 (a4) ⊗ ka2 (a3) ⊗ ka1 (a2) ⊗ a1.

Proof. We have for every a ∈ {0, 1, 2} and n ∈ N

a · kn
0 = kn

1 · a a · kn
1 = kn

0 · kn(a).

This follows directly from the recurrent definition of k0 and k1.
Using this we can move all kai

0 in the sequence (7) away to the left. Let us take
the ending of length 2n of the sequence. We have then the following equalities

a2n · ka2n
0 ⊗ a2n−1 · ka2n−1

0 ⊗ · · · ⊗ a2 · ka2
0 ⊗ a1 · ka1

0

= ka2n
1 · a2n · ka2n−1

1 ⊗ a2n−1 · ka2n−2
1 ⊗ · · · ⊗ a2 · ka1

1 ⊗ a1

= ka2n
1 k

a2n−1
0 · ka2n−1(a2n) · ka2n−2

0 ⊗ ka2n−2(a2n−1) · ka2n−3
0 ⊗ · · · ⊗ ka1 (a2) ⊗ a1

= . . . = ka2n
1 k

a2n−1
0 k

a2n−2
1 · · ·ka2

1 ka1
0 ·

ka2n−1+a2n−3+···+a1 (a2n) ⊗ ka2n−2+a2n−4+···+a2 (a2n−2) ⊗ · · · ⊗ ka1 (a2) ⊗ a1

and since the element ka2n
1 k

a2n−1
0 k

a2n−2
1 · · · ka2

1 ka1
0 belongs to a finite group 〈k0, k1〉 =

〈k0〉 × 〈k1〉, we get the necessary equivalence of sequences. �

6.2. Mating and dragon curve. We are going to give here an interpretation of
the results from a paper by John Milnor [Mil04] where he describes and computes a
surjective continuous map from a dendrite Julia set onto the complex sphere coming
from mating of two polynomials.

Let f(z) = z2 + c, where c = c1/4 ≈ −0.2282 + 1.1151i be the quadratic poly-
nomial such that f2(c) is a fixed point of f . The parameter c is a root of the
polynomial x3 + 2x2 + 2x+ 2.

Let us take the basepoint t = +∞ and the connecting paths `0, `1 to be trivial
and the upper semicircle at infinity, respectively. Take the generators of the IMG (f)
to be small simple loops α, β, γ going in the positive direction around the points
c, c2 + c and (c2 + c)2 + c, respectively. We connect the loops to the basepoint by
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Figure 13. Julia set of z2 − 0.2282 . . .+ 1.1151 . . . i

external rays at the angles 1/4, 1/2 and 0, respectively and by the shortest arcs from
+∞ to the ray inside the upper semicircle. We get the following wreath recursions
(after computing the generators of D (1/4))

α = σ(β−1α−1, αβ),
β = (α, 1),
γ = (γ, β).

It is easy to see that the elements α, β, γ ∈ IMG (f) are of order 2. Note that the
loop γαβ (going in the positive direction around the post-critical set) is the binary
adding machine

γαβ = σ(1, γαβ).

Let us mate the polynomial f with itself, i.e., take two copies of the plane with
the action of f on both of them and glue them together along the circle at infinity
identifying the points of the circles which are symmetric with respect to the real
axis.

In terms of the category of self-similar groups this mating operation can be
interpreted as the amalgam of the embeddings a 7→ γαβ and a 7→ (γαβ)−1 of the
adding machine a = σ(1, a) into IMG (f), i.e., the universal object H making the
diagram

Z −→ IMG (f)y
y

IMG (f) −→ H

commutative (more precisely, we have to define the embedding of the adding ma-
chine into IMG (f) as a homomorphism of the permutational bimodules, i.e., also
to identify the respective bases).

Let us compute the iterated monodromy group of the mating. Choose in one
plane the generators α, β, γ and the basis of the bimodule `0, `1, as before. Let
α′, β′, γ′ and `′

0, `
′
1 be the paths defined by the same way in the second plane. Note

that γαβ = (γ′α′β′)−1 = β′α′γ′. Then we have `0 = `′
0 and `1 = `′

1 · β′α′γ′.
The action of α′, β′, γ′ defined with respect to the basis `′

0, `
′
1 is the same as for

α, β, γ with respect to `0, `1 (with primes added everywhere). Hence, the action of
α′, β′, γ′ associated with the basis `0, `1 is obtained by pos-conjugating the recursion
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by (1, β′α′γ′). Hence, we get

α′ = σ(γ′, γ′),

β′ = (α′, 1),
γ′ = (γ′, γ′α′β′α′γ′).

Thus the group IMG (F ) is generated by α, β, γ, α′, β′, γ′, which are given by the
above recursion.

We have γαβγ′α′β′ = 1, hence we can eliminate α′ = γ′βαγβ′ = β′γαβγ′ from
the generating set.

Consider now only the paths which do not intersect the external rays at angles
1/2 and 0 (we want to avoid Thurston obstructions, but this is not very important
here; we are going just to pass to a smaller subgroup). We change therefore the
basis to `0, `1 · βα, conjugating the recursion by (1, βα):

α = σ,

β = (α, 1), β′ = (γ′βαγβ′, 1),

γ = (γ, αβα), γ′ = (γ′, γβ′γ),

then change our generating set to a = α, b = αβα, c = γ, b′ = γβ′γ, c′ = γ′:

a = σ,

b = (1, a), b′ = (cc′abb′, 1),

c = (c, b), c′ = (c′, b′),

and consider the subgroup generated by a,B = bb′, C = cc′ which are given then
by

a = σ,

B = (CaB, a),
C = (C,B).

Proposition 6.3. The simplicial Schreier graphs of IMG (F ) = 〈a, b, c, b′, c′〉 and
G = 〈a,B,C〉 coincide. Namely, if b(v) 6= v, b′(v) 6= v, c(v) 6= v, or c′(v) 6= v, then
b(v) = B(v), b′(v) = B(v), c(v) = C(v) and c′(v) = C(v), respectively.

Proof. See a part of the Moore diagram defining a, b, c, b′, c′ on the top part of
Figure 14. The bottom part of the figure shows a smaller part of the Moore dia-
gram. Tracking the paths in these diagrams, one can see that the statement of the
proposition is correct. �

Corollary 6.4. The inclusion G < IMG (F ) induces a homeomorphism of the
limit spaces. The inclusion IMG (f) = 〈a, b, c〉 < IMG (F ) induces a surjective
continuous map.

We know that the group generated by a,B and C is isomorphic to the group of
affine transformations of C of the form z 7→ ±z + (m + ni), where m + ni ∈ Z[i],
see 4.8.2. The generators act on the complex plane by the rules z · a = −z − i,
z · B = −z − i + 1 and z · C = −z and the associated virtual endomorphism is
induced by the linear map z 7→ z/(1 − i) on C.

Hence the limit dynamical system of G = 〈a,B,C〉 and of IMG (F ) (as a topo-
logical dynamical system) is the Lattès example conjugate to the rational function
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Figure 14

i
2

(
z + z−1

)
, the limit space JG = JIMG(F ) is the complex sphere and the limit

G-space XG is the complex plane C with the described affine action of G (the limit
space XIMG(F ) is more complicated).

Let us take the basepoint ξ = (1 − i)/4 and take its orbit ξ · G. We have
ξ · a = (−1 − 3i)/4, ξ · B = (3 − 3i)/4 and ξ · C = (−1 + i)/4. Connect ξ to its
images under the generators. We get three segments. The union Γ of the images
of these segments is the left Cayley graph of G. See a part of it on Figure 15 (the
highlighted edges will be explained later). The Schreier graph of the left action of
G on the self-similarity bimodule coincides with the Cayley graph.

It follows from Proposition 6.3 that the Schreier graph of the action of IMG (f) =
〈a, b, c〉 on Xn is a subgraph of the Schreier graph of the action of G. The Schreier
graph of G is the quotient of the graph Γ/(1 − i)n by the action of G.

It follows from the recurrent definition of a, b and c (see their Moore diagram on
Figure 14) that the Schreier graph Γn(IMG (f)) of the action of 〈a, b, c〉 on Xn can
be constructed using the following recurrent construction (for n ≥ 3).

Take two copies of the Γn−1(IMG (f)), connect the vertices 00 . . . 011 = 0n−311
of the two copies by an edge and append 0 to the names of the vertices of the first
copy and 1 to the names of the vertices of the second copy (so that the connected
vertices are 00 . . . 0110 and 00 . . . 0111). The connecting edge corresponds to the
generator c. The obtained new graph is Γn(IMG (f)).
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Figure 15. Schreier graph of IMG
(
z2 − 0.2282 . . .+ 1.1151 . . . i

)

Note that it follows that the Schreier graphs of IMG (f) are trees. This reflects
the fact that the limit space JIMG(f) is a dendrite (see Figure 13).

Using this rule one can find the edges of the Schreier graph of G which belong
to Γn(IMG (f)). Figure 15 shows these edges for n = 8 (one has however, to wrap
it around the sphere, taking quotient of the picture by the action of the group G,
if we assume that the figure shows the graph Γ/(1 − i)8).

The Schreier graphs of IMG (f) approximate the limit space JIMG(f), i.e., the
Julia set of f . The embedding of the Schreier graph into the Schreier graph of
G approximates the continuous map from the dendrite JIMG(f) onto the sphere
JG = JIMG(F ) induced by the embedding IMG (f) ↪→ IMG (F ). For more detail
see a similar example in the last section of [Nek05].

An interesting observation is the fact that the Schreier graphs of IMG (f) can
be constructed using the classical paper folding procedure. We will describe this
fact without proofs, which are easy inductive arguments based on the recurrent
construction of the Schreier graphs.

Take a strip of paper and fold it n times, each time in the same way (say, put it
horizontally and rotate the right half around the middle point by π in the positive
direction). Then unfold it so that every bend is a right angle. See the top of
Figure 16 where the resulting broken lines for n = 2, . . . , 7 are shown. Properly
rescaled lines will converge to the Heighway dragon curve (see [Edg90]).

Take now two copies of such a broken line (for the same n) and put them together
in such a way that they have common endpoints and one is rotation by π of the
other. We get a closed broken line of 2n+1 segments. The internal part of this line
will consist of 2n−1 squares which are connected by corridors in the same way as
the vertices of the Schreier graph of the action of IMG (f) on Xn−1 are connected
by edges. The lower part of Figure 16 shows the corridors and the corresponding
Schreier graphs.
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Figure 16. Paper folding and IMG (f)

There is a picture of the Schreier graph of IMG (f) on page 66 of the book of
B. Mandelbrot [Man82] with the comment

TWINDRAGON RIVER. After the streams near the source are erased
(for legibility), the river tree of a twindragon looks like this.

B. Mandelbrot observes that many plane-filling curves go around plane-filling den-
drites (river trees), which is particularly evident for the case of the paper-folding
curve.

6.3. Sierpiński curve. Consider the group G generated by

a = σ, b = (a, c), c = (b, b).

We have seen in 4.8.3 that this group is isomorphic to the group of all symmetries
of the square lattice. The orbifold JG = R2/G is the rectangular isosceles triangle.

The Moore diagram on Figure 17 shows that the generator x = (a, x) of the
dihedral group 〈a, x〉 acts on every word either as a, or as b.

Therefore, the limit space of G coincides with the limit space of G1 = 〈a, b, c, x〉
and the inclusion D∞ = 〈a, x〉 ↪→ G1 induces a surjective continuous map of the
limit spaces: from the real segment onto the triangle. An approximation of this
map is shown on Figure 18. It is called Sierpiński plane filling curve, see [Man82].
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