Self-similar groups and their limit spaces

Volodymyr Nekrashevych

October 13, 2008, Banff

V. Nekrashevych (Texas A&M)

Self-similar groups

October 13, 2008, Banff 1 / 26

Self-similar groups

Definition

A self-similar group (G, X) is a group G with a faithful action on $X^* = \{x_1 \dots x_n : x_i \in X\}$ such that for every $g \in G$ and $x \in X$ there exist $h \in G$ and $y \in X$ such that

$$g(xw) = yh(w)$$

for all $w \in X^*$.

If the action is self-similar, then for every $v, w \in X^*$ and $g \in G$ there exists $g|_v \in G$ such that

$$g(vw)=g(v)g|_v(w).$$

for all $w \in X^*$.

Example: odometer

Consider the cyclic group generated by the transformation a of $\{0,1\}^*$ given by the recurrent rule

$$a(0w) = 1w, \quad a(1w) = 0a(w).$$

It acts as adding 1 to a dyadic integer:

$$a(x_1x_2...x_n) = y_1y_2...y_n \Leftrightarrow 1 + \sum_{k=1}^n 2^{k-1}x_k = \sum_{k=1}^n 2^{k-1}y_k \pmod{2^n}.$$

Example: Grigorchuk group

Consider the group generated by the transformations a, b, c, d of $\{0, 1\}^*$ given by

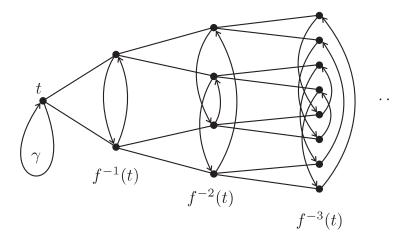
$$egin{aligned} & a(0w) &= 1w, & a(1w) &= 0w, \ & b(0w) &= 0a(w), & b(1w) &= 1c(w), \ & c(0w) &= 0a(w), & c(1w) &= 1d(w), \ & d(0w) &= 0w, & d(1w) &= 1b(w). \end{aligned}$$

Iterated monodromy groups

Let $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ be a covering of a topological space by its subset. Choose a basepoint $t \in \mathcal{M}$. We get a *rooted tree of preimages*:

$$T = \{t\} \cup f^{-1}(t) \cup f^{-2}(t) \cup f^{-3}(t) \cup \cdots$$

The fundamental group $\pi_1(\mathcal{M}, t)$ acts on it in the natural way.



The quotient of the action of $\pi_1(\mathcal{M}, t)$ by the kernel of the action is called the *iterated monodromy group* IMG (f).

There is a natural labeling of vertices of the tree of preimages T by finite words over an alphabet X, $|X| = \deg f$, such that the action of IMG (f) is self-similar.

For example, the odometer action of \mathbb{Z} is IMG (z^2) ; the group generated by

$$a(0w) = 1w, \quad a(1w) = 0b(w), \quad b(0w) = 0w, \quad b(1w) = 1a(w)$$

IMG $(z^2 - 1).$

is

Contracting groups

Definition

A self-similar group G is called *contracting* if there exists a finite set $\mathcal{N} \subset G$ such that for every $g \in G$ there exists n such that $g|_v \in \mathcal{N}$ whenever $|v| \geq n$.

The smallest set ${\cal N}$ satisfying this property is called the $\mathit{nucleus}$ of the group.

- Contracting groups have solvable word problem (of polynomial complexity). Conjugacy problem?
- They have no free subgroups. Are they amenable?
- They are typically infinitely presented. (All, except for virtually nilpotent?)
- Many are (weakly) branch. (All, except for virtually nilpotent?)

Limit space \mathcal{J}_{G}

Consider the space $X^{-\omega}$ of the left-infinite words $\dots x_2 x_1$. Fix a self-similar group *G*. Two sequences $\dots x_2 x_1, \dots y_2 y_1$ are equivalent if there exists a finite set $A \subset G$ and a sequences $g_k \in A$ such that

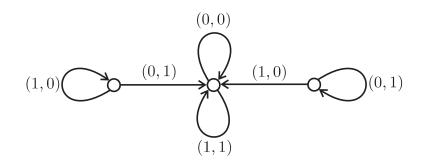
$$g_k(x_k\ldots x_1)=y_k\ldots y_1.$$

for all k.

The quotient of $X^{-\omega}$ by this equivalence relation is the *limit space* \mathcal{J}_G . The equivalence relation is invariant under the shift $\ldots x_2 x_1 \mapsto \ldots x_3 x_2$, hence the shift induces a continuous map $s : \mathcal{J}_G \longrightarrow \mathcal{J}_G$.

Proposition

Sequences $\ldots x_2x_1, \ldots y_2y_1 \in X^{-\omega}$ are equivalent if and only if there exists a path $\ldots e_2e_1$ in the Moore diagram of the nucleus \mathcal{N} such that the arrow e_n is labeled by (x_n, y_n) .



Elementary properties

The limit space $\mathcal{J}_{\mathcal{G}}$ is metrizable, finite-dimensional, compact.

It is connected if the group G is level-transitive.

It is locally connected if the group G is self-replicating, i.e., if for every $x, y \in X$ and $h \in G$ there exists $g \in G$ such that g(x) = y and $g|_x = h$.

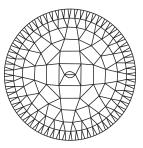
Julia sets and limit spaces

If $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is an *expanding* partial self-covering, then IMG(f) is contracting and $(\mathcal{J}_{IMG(f)}, s)$ is topologically conjugate to (\mathcal{J}_f, f) , where \mathcal{J}_f is the set of accumulation points of the set $\bigcup_{k>1} f^{-k}(t)$.

We get in this way a symbolic presentation of the action of f on its Julia set.

Limit spaces as Gromov boundaries

Let a contracting group G be generated by a finite set S. Consider the graph with the set of vertices X^{*} where a vertex v is connected to s(v) for $s \in S$ and to xv for $x \in X$.



This graph is Gromov hyperbolic and its boundary is homeomorphic to $\mathcal{J}_{\mathcal{G}}$.

Limit solenoid

Consider the space $X^{\mathbb{Z}}$ of bi-infinite sequences

 $\ldots x_{-2}x_{-1}x_0 \cdot x_1x_2 \ldots$

Let (G, X) be a contracting group. Two sequences $\dots x_{-1}x_0 \dots x_1x_2 \dots \dots y_{-1}y_0 \dots y_1y_2 \dots$ are equivalent (with respect to the action of G) if there exists a finite set $A \subset G$ and a sequence $g_k \in A$ such that

$$g_k(x_kx_{k+1}\ldots)=y_ky_{k+1}\ldots$$

for all $k \in \mathbb{Z}$.

The quotient of $X^{\mathbb{Z}}$ by the equivalence relation is called the *limit solenoid* S_G of the group (G, X).

The limit solenoid is a compact metrizable space. The shift on $X^{\mathbb{Z}}$ induces a homeomorphism of \mathcal{S}_{G} .

The limit solenoid is connected if G is level-transitive.

A *leaf* of the solenoid S_G is the set of points represented by sequences

 $\dots x_{-2}x_{-1}x_0 \cdot x_1x_2 \dots$ such that $x_1x_2 \dots$ belongs to an orbit of the action of *G* on X^{ω}.

It follows from the definition of the equivalence relation on $X^{\mathbb{Z}}$ that the leaves are disjoint. If the action is self-replicating, then the leaves are mapped by the shift to leaves.

Examples

Let f be a post-critically finite complex rational function. Then the limit solenoid of IMG (f) is the lift of the Julia set of f to the inverse limit of the sequence

$$\widehat{\mathbb{C}} \stackrel{f}{\leftarrow} \widehat{\mathbb{C}} \stackrel{f}{\leftarrow} \widehat{\mathbb{C}} \stackrel{f}{\leftarrow} \cdots$$

.

Examples

Let $(G, X) = (\mathbb{Z}, \{0, 1\})$ be the binary odometer action. Then the limit solenoid is the space of binary sequences $\dots x_{-1}x_0 \dots x_1x_2 \dots$ modulo the equivalence relation identifying two sequences $\dots x_{-1}x_0 \dots x_1x_2 \dots$ and $\dots y_{-1}y_0 \dots y_1y_2 \dots$ iff

$$\sum_{k=0}^{\infty} 2^{-k} x_{-k} - \sum_{k=0}^{\infty} 2^{-k} y_{-k} = \sum_{k=1}^{\infty} 2^{k} x_{k} - \sum_{k=1}^{\infty} 2^{k} y_{k},$$

where both differences belong to \mathbb{Z} .

It follows that the limit solenoid of the binary odometer is the inverse limit of the circle \mathbb{R}/\mathbb{Z} with respect to the double self-coverings $x \mapsto 2x$.

More generally, the limit solenoid \mathcal{S}_G of a contracting group is the inverse limit of the sequence

$$\mathcal{J}_{\mathcal{G}} \xleftarrow{s} \mathcal{J}_{\mathcal{G}} \xleftarrow{s} \cdots$$

Examples

Let (\mathbb{Z}^n, X) be a self-replicating free abelian group. Then there exists a matrix $A \in M_{n \times n}(\mathbb{Z})$ such that $\det(A) = |X|$, and a coset transversal $\{r_0, \ldots, r_{d-1}\}$ of \mathbb{Z}^n modulo $A\mathbb{Z}^n$ such that the action of \mathbb{Z}^n on X^{ω} describes the natural action of \mathbb{Z}^n on the formal series

$$r_{x_0} + Ar_{x_1} + A^2 r_{x_2} + \cdots$$

The group (\mathbb{Z}^n, X) is contracting if and only if all eigenvalues of A are greater than one. The limit space of (\mathbb{Z}^n, X) will be the torus $\mathbb{R}^n/\mathbb{Z}^n$, where a sequence $\ldots x_2x_1$ encodes the point

$$A^{-1}r_{x_1} + A^{-2}r_{x_2} + A^{-3}r_{x_3} + \cdots$$

The limit solenoid is the space of all formal series

$$\sum_{k=-\infty}^{+\infty} A^k r_{i_k}$$

Tiles

Let (G, X) be a contracting group and let S_G be its solenoid. A *tile* \mathcal{T}_v for $v \in X^{\omega}$ is the set of points of S_G represented by the sequences of the form $\ldots x_{-1}x_0 \cdot v$. Tiles \mathcal{T}_{v_1} and \mathcal{T}_{v_2} intersect if and only if there exists an element g of the nucleus of G such that $g(v_1) = v_2$. It follows directly from the definition that

$$\mathsf{s}(\mathcal{T}_{\mathsf{v}}) = \bigcup_{\mathsf{x}\in\mathsf{X}} \mathcal{T}_{\mathsf{x}\mathsf{v}}.$$

Every leaf is a union of tiles. We consider the leaves with the *inductive limit topology* defined with respect to this decomposition into the union of tiles.

If for every $g \in G$ there exists $v \in X^*$ such that $g|_v = 1$, then every tile is closure of its interior (in the inductive limit topology of the leaf) and different tiles have disjoint interiors.

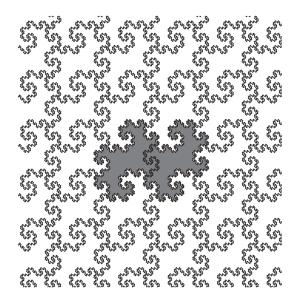
Let (\mathbb{Z}^n, X) be a contracting self-replicating action of \mathbb{Z}^n . Let L_v be the leaf of points represented by sequences $\ldots x_{-1}x_0 \cdot g(v)$ for $g \in \mathbb{Z}^n$. The action of \mathbb{Z}^n on X^{ω} is free, hence g is uniquely defined by g(v) and v. We can identify then the leaf L_v with \mathbb{R}^n by

$$[\ldots x_{-1}x_0 \cdot g(v)] \mapsto g + \sum_{k=0}^{\infty} A^{-k}r_{x_{-k}}.$$

The tile \mathcal{T}_{v} is identified then with the set of sums

$$\sum_{k=0}^{\infty} A^{-k} r_{x_{-k}}.$$

-



"Iterated monodromy group" of the Penrose tiling

$$S(aw) = cw$$

 $S(bw) = b \cdot M(w)$
 $S(cw) = aw$

$$\begin{array}{rcl} M(aw) &=& a \cdot L(w) \\ M(bw) &=& cw \\ M(caw) &=& c \cdot M(aw) \\ M(cbw) &=& bbw \\ M(ccw) &=& bcw \end{array}$$

$$\begin{array}{rcl} L(aaw) &=& b \cdot S(aw) \\ L(abw) &=& a \cdot M(bw) \\ L(acw) &=& a \cdot M(cw) \\ L(bbw) &=& b \cdot S(bw) \\ L(bcw) &=& a \cdot S(cw) \\ L(cw) &=& c \cdot L(w) \end{array}$$

V. Nekrashevych (Texas A&M)