Combinatorial models of expanding maps and Julia sets

Volodymyr Nekrashevych

May 18, 2011 Clay Institute

V. Nekrashevych (Texas A&M)

Combinatorial models

May 18, 2011 1 / 19

Definition

A topological correspondence (topological automaton) \mathcal{F} is a quadruple $(\mathcal{M}, \mathcal{M}_1, f, \iota)$, where \mathcal{M} and \mathcal{M}_1 are topological spaces (orbispaces), $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a finite covering map and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a continuous map.

Topological correspondences

Example:
$$-\frac{z^{3}}{2} + \frac{3z}{2}$$

V. Nekrashevych (Texas A&M)

Transducers

Definition

An *automaton* over an alphabet X is a triple (Q, τ, π) , where Q is a set (of *internal states*) and τ and π are maps

$$\tau: Q \times \mathsf{X} \longrightarrow \mathsf{X}, \quad \pi: Q \times \mathsf{X} \longrightarrow Q,$$

called the *output* and *transition*. The automaton is called *invertible* if for every $q_0 \in Q$ the map $x \mapsto \tau(q_0, x)$ is a permutation. The automaton is *finite* if the set Q is finite.

Dual Moore diagram

Let \mathcal{M} be the graph with one vertex and |Q| arrows e_q , $q \in Q$. Let \mathcal{M}_1 be the graph with the set of vertices X where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q,x}$ from x to $\tau(q,x)$. Define $f(e_{q,x}) = e_q$ and $\iota(e_{q,x}) = e_{\pi(q,x)}$. If the automaton is invertible, then f is a covering.

Iterating

We get three inverse limits $\lim_{f} \mathcal{F}$, $\lim_{\iota} \mathcal{F}$ and $\lim_{f,\iota} \mathcal{F}$ with self-maps ι_{∞} , f_{∞} and Δ .

Iterated monodromy groups

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological correspondence. Identify $\pi_1(\mathcal{M}_1)$ with a subgroup of finite index in $\pi_1(\mathcal{M})$. Then $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ is the *virtual endomorphism* of $\pi_1(\mathcal{M})$ associated with the correspondence. Denote

$$N_{\iota_*} = igcap_{n \ge 1, g \in \pi_1(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_*^n \cdot g$$

The iterated monodromy group of \mathcal{F} is

IMG
$$(\mathcal{F}) = \pi_1(\mathcal{M})/N_{\iota_*}$$

together with the (conjugacy class of) the virtual endomorphism induced by ι_* . Two topological correspondences are *combinatorially equivalent* if they have the same iterated monodromy groups.

Contracting correspondences

Definition

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a topological correspondence such that \mathcal{M} is a compact path connected and locally path connected (orbi)space. \mathcal{F} is *contracting* if there exists a length structure on \mathcal{M} and $\lambda < 1$ such that for every rectifiable path γ in \mathcal{M}_1

$$\operatorname{length}(\iota(\gamma)) \leq \lambda \cdot \operatorname{length}(\gamma),$$

where length of γ is computed with respect the lift of the length structure by f.

Rigidity Theorem

Theorem

Let $\mathcal{F} = (\mathcal{M}, \mathcal{M}_1, f, \iota)$ be a contracting topological correspondence with locally simply connected \mathcal{M} . Then the system $(\lim_{\iota} \mathcal{F}, f_{\infty})$ depends, up to a topological conjugacy, on $(IMG(\mathcal{F}), \iota_*)$ only.

If \mathcal{F} is a correspondence associated with an expanding partial self-covering $f: \mathcal{M}_1 \longrightarrow \mathcal{M}$, then \mathcal{F} is contracting, and the limit $(\lim_{\iota} \mathcal{F}, f_{\infty})$ is restriction of f onto the attractor $\bigcap_{n\geq 0} \mathcal{M}_n$ of backward iterations of f (the "Julia set" of f). Constructing another combinatorially equivalent contracting topological correspondence \mathcal{F} , we get approximations of the Julia set.

A multi-dimensional example

Consider the following map $\mathbb{C}^n \longrightarrow \mathbb{C}^n$:

$$F(x_1, x_2, \ldots, x_n) = \left(1 - \frac{1}{x_n^2}, 1 - \frac{x_1^2}{x_n^2}, \ldots, 1 - \frac{x_{n-1}^2}{x_n^2}\right)$$

It can be extended to an endomorphism of \mathbb{CP}^n :

$$[x_1:x_2:\cdots:x_n:x_{n+1}]\mapsto [x_n^2-x_{n+1}^2:x_n^2-x_1^2:\cdots:x_n^2-x_{n-1}^2:x_n^2].$$

The union of the forward orbits of the set of critical points is the union P of the hyperplanes $x_i = 0$, $x_i = x_j$. We get a partial self-covering $F : \mathbb{CP}^n \setminus F^{-1}(P) \longrightarrow \mathbb{CP}^n \setminus P$.

A model of F

A cactus diagram is an oriented two-dimensional contractible cellular complex Γ consisting of n + 2 discs D_i , $i = 0, 1, \ldots, n, n + 1$, such that any two disc are either disjoint or have only one common point. A planar cactus diagram is a cactus diagram Γ together with an isotopy class of an orientation preserving embedding $\Delta : \Gamma \longrightarrow \mathbb{R}^2$ (i.e., cyclic orders of the discs adjacent to every given disc). A metric cactus diagram is a cactus diagram together with a metric on the one-skeleton, such that perimeter of the disc D_k is $\sqrt[n+2]{2^{-k}}$.

Let \mathcal{M} be the space of all such metric planar cactus diagrams. It is an affine polyhedral complex. The cells are in a bijective correspondence with planar cactus diagrams.

For every planar metric cactus diagram Γ consider a diagram Γ_1 such that there exists a degree two branched covering map $\Gamma_1 \longrightarrow \Gamma$ with the critical point inside the disc D_0 . Denote one of the preimages of D_i by D'_{i-1} (mod n+2). Let \mathcal{M}_1 be the configuration space of such labeled planar metric cactus diagrams Γ_1 . We have a natural covering map $f : \Gamma_1 \mapsto \Gamma$. For $\Gamma_1 \in \mathcal{M}_1$ contract the non-labeled discs, rename D'_i by D_i and divide all the distances by $\sqrt[n+2]{2}$. You get a point of \mathcal{M} . This gives the map $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$.

An example

Julia set of
$$1 - \frac{1}{x^2}$$

General approach

Let $\phi: G_1 \longrightarrow G$ be a surjective virtual endomorphism of a finitely generated group. If \mathcal{X} is space with a co-compact proper *G*-action by isometries and $F: \mathcal{X} \longrightarrow \mathcal{X}$ is such that

$$F(x \cdot g) = F(x) \cdot \phi(g).$$

Then $(\mathcal{M} = \mathcal{X}/G, \mathcal{M}_1 = \mathcal{X}/G_1, f, \iota)$, where f, ι are induced by identity and F, is a topological correspondence with the associated virtual endomorphism ϕ .

Let $S = S^{-1} \ni 1$ be a finite generating set of *G*. Rips complex $\Gamma(G, S^n)$ is the simplicial complex with set of vertices *G* where *A* is a simplex if $Ag^{-1} \subset S^n$ for all $g \in A$.

Let $\phi: G_1 \longrightarrow G$ be a contracting surjective virtual endomorphism. Choose a left coset representative system $\{g_1, g_2, \ldots, g_d\}$ of G/G_1 . Define $F(g) = \phi(g_i^{-1}g)$. Then $F(x \cdot g) = F(x) \cdot \phi(g)$ for all $x \in G$ and $g \in \text{Dom } \phi$.

Theorem

There exist n and m such that $F^m : \Gamma(G, S^n) \longrightarrow \Gamma(G, S^n)$ is simplicial and equivariantly homotopic to a contracting map.

Here equivariant homotopy means that $H(x \cdot g) = H(x) \cdot \phi(g)$ for all maps H along the homotopy.