# Combinatorial models of expanding maps and Julia sets 

Volodymyr Nekrashevych

May 18, 2011
Clay Institute

## Definition

A topological correspondence (topological automaton) $\mathcal{F}$ is a quadruple $\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$, where $\mathcal{M}$ and $\mathcal{M}_{1}$ are topological spaces (orbispaces), $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a finite covering map and $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$ is a continuous map.

Example: $-\frac{z^{3}}{2}+\frac{3 z}{2}$


## Transducers

## Definition

An automaton over an alphabet X is a triple $(Q, \tau, \pi)$, where $Q$ is a set (of internal states) and $\tau$ and $\pi$ are maps

$$
\tau: Q \times \mathrm{X} \longrightarrow \mathrm{X}, \quad \pi: Q \times \mathrm{X} \longrightarrow Q
$$

called the output and transition. The automaton is called invertible if for every $q_{0} \in Q$ the map $x \mapsto \tau\left(q_{0}, x\right)$ is a permutation. The automaton is finite if the set $Q$ is finite.

## Dual Moore diagram

Let $\mathcal{M}$ be the graph with one vertex and $|Q|$ arrows $e_{q}, q \in Q$. Let $\mathcal{M}_{1}$ be the graph with the set of vertices $X$ where for every $x \in X$ and $q \in Q$ we have an arrow $e_{q, x}$ from $x$ to $\tau(q, x)$. Define $f\left(e_{q, x}\right)=e_{q}$ and $\iota\left(e_{q, x}\right)=e_{\pi(q, x)}$. If the automaton is invertible, then $f$ is a covering.


## Iterating



We get three inverse $\operatorname{limits} \lim _{f} \mathcal{F}, \lim _{\iota} \mathcal{F}$ and $\lim _{f, \iota} \mathcal{F}$ with self-maps $\iota_{\infty}$, $f_{\infty}$ and $\Delta$.

## Iterated monodromy groups

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological correspondence. Identify $\pi_{1}\left(\mathcal{M}_{1}\right)$ with a subgroup of finite index in $\pi_{1}(\mathcal{M})$. Then $\iota_{*}: \pi_{1}\left(\mathcal{M}_{1}\right) \longrightarrow \pi_{1}(\mathcal{M})$ is the virtual endomorphism of $\pi_{1}(\mathcal{M})$ associated with the correspondence.
Denote

$$
N_{\iota_{*}}=\bigcap_{n \geq 1, g \in \pi_{1}(\mathcal{M})} g^{-1} \cdot \operatorname{Dom} \iota_{*}^{n} \cdot g
$$

The iterated monodromy group of $\mathcal{F}$ is

$$
\operatorname{IMG}(\mathcal{F})=\pi_{1}(\mathcal{M}) / N_{\iota_{*}}
$$

together with the (conjugacy class of) the virtual endomorphism induced by $\iota_{*}$. Two topological correspondences are combinatorially equivalent if they have the same iterated monodromy groups.

## Contracting correspondences

## Definition

Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a topological correspondence such that $\mathcal{M}$ is a compact path connected and locally path connected (orbi)space. $\mathcal{F}$ is contracting if there exists a length structure on $\mathcal{M}$ and $\lambda<1$ such that for every rectifiable path $\gamma$ in $\mathcal{M}_{1}$

$$
\text { length }(\iota(\gamma)) \leq \lambda \cdot \text { length }(\gamma)
$$

where length of $\gamma$ is computed with respect the lift of the length structure by $f$.

## Rigidity Theorem

Theorem
Let $\mathcal{F}=\left(\mathcal{M}, \mathcal{M}_{1}, f, \iota\right)$ be a contracting topological correspondence with locally simply connected $\mathcal{M}$. Then the system $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ depends, up to a topological conjugacy, on (IMG $\left.(\mathcal{F}), \iota_{*}\right)$ only.

If $\mathcal{F}$ is a correspondence associated with an expanding partial self-covering $f: \mathcal{M}_{1} \longrightarrow \mathcal{M}$, then $\mathcal{F}$ is contracting, and the limit $\left(\lim _{\iota} \mathcal{F}, f_{\infty}\right)$ is restriction of $f$ onto the attractor $\bigcap_{n \geq 0} \mathcal{M}_{n}$ of backward iterations of $f$ (the "Julia set" of $f$ ). Constructing another combinatorially equivalent contracting topological correspondence $\mathcal{F}$, we get approximations of the Julia set.

## A multi-dimensional example

Consider the following map $\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ :

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(1-\frac{1}{x_{n}^{2}}, 1-\frac{x_{1}^{2}}{x_{n}^{2}}, \ldots, 1-\frac{x_{n-1}^{2}}{x_{n}^{2}}\right) .
$$

It can be extended to an endomorphism of $\mathbb{C P}^{n}$ :

$$
\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right] \mapsto\left[x_{n}^{2}-x_{n+1}^{2}: x_{n}^{2}-x_{1}^{2}: \cdots: x_{n}^{2}-x_{n-1}^{2}: x_{n}^{2}\right] .
$$

The union of the forward orbits of the set of critical points is the union $P$ of the hyperplanes $x_{i}=0, x_{i}=x_{j}$. We get a partial self-covering $F: \mathbb{C P}^{n} \backslash F^{-1}(P) \longrightarrow \mathbb{C P}^{n} \backslash P$.

## A model of $F$

A cactus diagram is an oriented two-dimensional contractible cellular complex $\Gamma$ consisting of $n+2$ discs $D_{i}, i=0,1, \ldots, n, n+1$, such that any two disc are either disjoint or have only one common point. A planar cactus diagram is a cactus diagram 「 together with an isotopy class of an orientation preserving embedding $\Delta: \Gamma \longrightarrow \mathbb{R}^{2}$ (i.e., cyclic orders of the discs adjacent to every given disc). A metric cactus diagram is a cactus diagram together with a metric on the one-skeleton, such that perimeter of the disc $D_{k}$ is $\sqrt[n+2]{2^{-k}}$.
Let $\mathcal{M}$ be the space of all such metric planar cactus diagrams. It is an affine polyhedral complex. The cells are in a bijective correspondence with planar cactus diagrams.

$$
\begin{array}{ccccc}
\& & \& & \infty & & \infty \\
\& & \& & \infty & \& & \infty \\
\& & 8 & \& & \& \\
\& & \& & \& & \& & \&
\end{array}
$$



For every planar metric cactus diagram $\Gamma$ consider a diagram $\Gamma_{1}$ such that there exists a degree two branched covering map $\Gamma_{1} \longrightarrow \Gamma$ with the critical point inside the disc $D_{0}$. Denote one of the preimages of $D_{i}$ by $D_{i-1}^{\prime}(\bmod$ $n+2$ ). Let $\mathcal{M}_{1}$ be the configuration space of such labeled planar metric cactus diagrams $\Gamma_{1}$. We have a natural covering map $f: \Gamma_{1} \mapsto \Gamma$. For $\Gamma_{1} \in \mathcal{M}_{1}$ contract the non-labeled discs, rename $D_{i}^{\prime}$ by $D_{i}$ and divide all the distances by $\sqrt[n+2]{2}$. You get a point of $\mathcal{M}$. This gives the map $\iota: \mathcal{M}_{1} \longrightarrow \mathcal{M}$.


## Julia set of $1-\frac{1}{x^{2}}$




## General approach

Let $\phi: G_{1} \longrightarrow G$ be a surjective virtual endomorphism of a finitely generated group. If $\mathcal{X}$ is space with a co-compact proper $G$-action by isometries and $F: \mathcal{X} \longrightarrow \mathcal{X}$ is such that

$$
F(x \cdot g)=F(x) \cdot \phi(g)
$$

Then $\left(\mathcal{M}=\mathcal{X} / G, \mathcal{M}_{1}=\mathcal{X} / G_{1}, f, \iota\right)$, where $f, \iota$ are induced by identity and $F$, is a topological correspondence with the associated virtual endomorphism $\phi$.
Let $S=S^{-1} \ni 1$ be a finite generating set of $G$. Rips complex $\Gamma\left(G, S^{n}\right)$ is the simplicial complex with set of vertices $G$ where $A$ is a simplex if $A g^{-1} \subset S^{n}$ for all $g \in A$.

Let $\phi: G_{1} \longrightarrow G$ be a contracting surjective virtual endomorphism. Choose a left coset representative system $\left\{g_{1}, g_{2}, \ldots, g_{d}\right\}$ of $G / G_{1}$. Define $F(g)=\phi\left(g_{i}^{-1} g\right)$. Then $F(x \cdot g)=F(x) \cdot \phi(g)$ for all $x \in G$ and $g \in \operatorname{Dom} \phi$.

Theorem
There exist $n$ and $m$ such that $F^{m}: \Gamma\left(G, S^{n}\right) \longrightarrow \Gamma\left(G, S^{n}\right)$ is simplicial and equivariantly homotopic to a contracting map.

Here equivariant homotopy means that $H(x \cdot g)=H(x) \cdot \phi(g)$ for all maps $H$ along the homotopy.

