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Self-similar groups

Definition

A self-similar group is a group G with a faithful action on
X∗ = {x1 . . . xn : xi ∈ X} such that for every g ∈ G and x ∈ X there exist
h ∈ G and y ∈ X such that

g(xw) = yh(w)

for all w ∈ X∗.

g · x = y · h

x : w 7→ xw
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For every g ∈ G and v ∈ X∗ there exists gv ∈ G such that

g(vw) = g(v) · gv (w)

g · v = g(v) · gv

Definition

A self-similar group (G ,X) is contracting if there exists a finite subset
N ⊂ G such that for every g ∈ G there exists n ∈ N such that

gv ∈ N

for all v ∈ X∗, |v | ≥ n.

The minimal subset N satisfying the definition is called the nucleus.
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Contracting groups have word problem of polynomial complexity.

Many are infinitely presented. (All except for some virtually nilpotent?)

Many are amenable. (All?)

Many groups of intermediate growth are contracting.
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Iterated monodromy groups

f : M1 −→ M
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Iterated monodromy group of z2 is Z generated by

a(0w) = 1w , a(1w) = 0a(w).

Iterated monodromy group of z2 − 1 is generated by two transformations
a, b given by

a(0w) = 0w , a(1w) = 1b(w)

b(0w) = 1w , b(1w) = 0a(w).
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Limit space JG

Consider the space X−ω of the left-infinite words . . . x2x1.
Fix a contracting group G . Two sequences . . . x2x1, . . . y2y1 are equivalent
if there exists a finite set A ⊂ G and a sequence gk ∈ A such that

gk(xk . . . x1) = yk . . . y1.

for all k.
The quotient of X−ω by this equivalence relation is the limit space JG .
The equivalence relation is invariant under the shift

. . . x2x1 7→ . . . x3x2,

hence the shift induces a continuous map s : JG −→ JG .

V. Nekrashevych (Texas A&M) Contracting Groups February 22, 2007, CIRM 7 / 21



Approximation by Schreier graphs
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Approximation by Schreier graphs
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Limit spaces as Gromov boundaries

Let 〈G ,X〉 be the semigroup of transformations of X∗ generated by

g : w 7→ g(w), x : w 7→ xw .

Let Γ be the left Cayley graph of 〈G ,X〉. G acts on Γ from the right.
If G is contracting, then Γ/G is Gromov hyperbolic with boundary
homeomorphic to JG .
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Functoriality

A morphism (G1,X1) −→ (G2,X2) of self-similar groups is a semigroup
homomorphism F : 〈G1,X1〉 −→ 〈G2,X2〉 such that F (G1) ⊆ G2 and
F (X1 · G1) ⊆ X2 · G2.

Contraction and the limit dynamical system depend only on the
isomorphism class of (G ,X) (in the category of self-similar groups).
The limit dynamical system is a functor from the category of contracting
self-similar groups to the category of dynamical systems (and
semiconjugacies).

In particular, if H is a self-similar subgroup of a contracting self-similar
group G , then the embedding H ↪→ G induces a surjective continuous map
JH −→ JG .
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Iterated Monodromy Groups

Let f : M1 −→ M be a covering by a subset. Choose a basepoint t and
let F be the set of all paths from t to points of

Tf =
⊔

n≥0

f −n(t).

Every ` ∈ F defines a transformation of Tf mapping z ∈ f −n(t) to the
end of the f n-preimage of ` starting at z .

The obtained semigroup of transformations of Tf is 〈IMG (f ) ,X〉 for a
self-similar action of IMG (f ).
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Julia sets and limit spaces

If f : M1 −→ M is an expanding partial self-covering, then (IMG (f ) ,X)
is contracting and (JIMG(f ), s) is topologically conjugate to (Jf , f ), where
Jf is the set of accumulation points of

⊔
n≥0 f −n(t).

The iterated monodromy group of (JIMG(f ), s) is (IMG (f ) , s).
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Mate f (z) = z2 − 0.2282 . . . + 1.1151 . . . i with itself. The obtained
embedding of IMG (f ) into a larger group induces a plane-filling dendrite,
described by J. Milnor.
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An axiomatic definition

Let (G ,X) be a self-similar group and let X be a right G -space. Let
X ⊗ X · G be the quotient of X × X · G by

ξ ⊗ g · m = ξ · g ⊗ m.

X ⊗ M is a right G -space with respect to

(ξ ⊗ m) · g = ξ ⊗ (m · g).
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A self-similarity is a homeomorphism Φ : X ⊗ X · G −→ X such that

Φ(ξ · g) = Φ(ξ) · g

for all ξ ∈ X ⊗ X · G and g ∈ G .
We get then a collection of continuous maps ξ 7→ ξ⊗ x for x ∈ X such that

(ξ · g) ⊗ x = (ξ ⊗ y) · h

for y = g(x) and h = gx , i.e., when g(xw) = yh(w) for all w .
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Let X be a proper, co-compact, locally compact, metrizable right G -space.
A relation R ⊂ X × X is bounded if there exists a compact set
K ⊂ X ×X such that R ⊂

⋃
g∈G K · g .

A neighborhood of the diagonal U ⊂ X × X is uniform if it contains a
G -invariant open neighborhood of the diagonal.
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Theorem

Let (G ,X) be a contracting group. Then there exists a right G-space XG

and a contracting self-similarity Φ : X ⊗ X · G −→ X , i.e., such that for

any uniform neighborhood U of the diagonal and for any bounded relation

R there exists n such that (ξ1 ⊗ v , ξ2 ⊗ v) ∈ U for all (ξ1, ξ2) ∈ R and all

v ∈ Xm for m ≥ n.

Moreover, X and the self-similarity are unique: if X ′ is another space with

a contracting self-similarity, then there exists a homeomorphism

F : X −→ X ′ such that

F (ξ · g) = F (ξ) · g , F (ξ ⊗ x) = F (ξ) ⊗ x

for all ξ ∈ X , g ∈ G and x ∈ X.

The unique G -space X is called the limit G-space. The orbispace X/G is
homeomorphic to JG .
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