Contracting Groups

Volodymyr Nekrashevych

July 9–13, 2007, ESI, Vienna

V. Nekrashevych (Texas A&M)

Contracting Groups

July 9-13, 2007, ESI, Vienna 1 / 68

Outline

- Self-similar contracting groups: definitions, examples and elementary properties.
- 2 Absence of free subgroups.
- Schreier graphs and limit spaces of contracting groups.
- Bounded automata. Amenability of a class of contracting groups.
- Operator algebras associated with contracting groups.

Self-similar groups

Definition

A self-similar group (G, X) is a faithful action of a group G on X^* such that for every $g \in G$ and every $x \in X$ there exist $h \in G$ and $y \in X$ such that

$$g(xw) = yh(w)$$

for all $w \in X^*$.

Example: take $G \cong \mathbb{Z}$ generated by *a*. Define an action of *G* on $\{0,1\}^*$ by the rule

$$a(0w) = 1w, \qquad a(1w) = 0a(w).$$

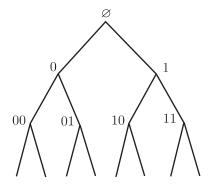
It describes the process of adding 1 to a diadic integer.

For every $v \in \mathsf{X}^*$ and every $g \in G$ there exists $h \in G$ such that

$$g(vw) = g(v)h(w)$$

for all $w \in X^*$.

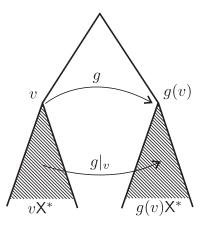
It follows that G acts on X^{*} by the automorphisms of the associated rooted tree (the right Cayley graph of the free monoid X^{*}).



If g(vw) = g(v)h(w) for all w, then we denote

$$h = g|_v$$

and call h the section (or restriction) of g at v.



We have the following properties of sections:

$$g|_{v_1v_2} = g|_{v_1}|_{v_2}, \qquad (g_1g_2)|_v = g_1|_{g_2(v)}g_2|_v.$$

A self-similar group (G, X) is *self-replicating* if it is level-transitive and for every $h \in G$ and $x \in X$ there exists $g \in G$ such that

$$g(x)=x, \quad g|_x=h.$$

Actions of \mathbb{Z}^n

Let A be an $n \times n$ matrix with integral entries. Let $d = \det A$, then $A(\mathbb{Z}^n)$ is a subgroup of index d of \mathbb{Z}^n .

Choose a coset transversal r_1, r_2, \ldots, r_d of $\mathbb{Z}^n / A(\mathbb{Z}^n)$. We can represent then every element $g \in \mathbb{Z}^n$ as a formal series

$$g = r_{i_0} + A(r_{i_1}) + A^2(r_{i_2}) + \cdots$$

in a unique way.

The group \mathbb{Z}^n acts on the series

$$r_{i_0} + A(r_{i_1}) + A^2(r_{i_2}) + \cdots$$

self-similarly:

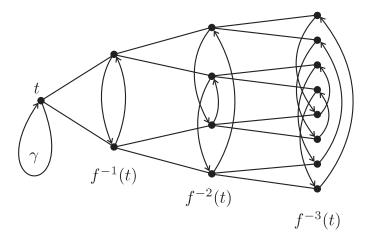
$$g+(r_{i_0}+A(r_{i_1})+A^2(r_{i_2})+\cdots)=r_{j_0}+A(h+r_{i_1}+A(r_{i_2})+A^2(r_{i_3})+\cdots),$$

where r_{j_0} and $h \in \mathbb{Z}^n$ are uniquely determined by

$$g+r_{i_0}=r_{j_0}+A(h).$$

Iterated monodromy groups

Let $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ be a covering of a space by a subset.



. . .

Choose an alphabet X, $|X| = \deg f$, a bijection $\Lambda : X \to f^{-1}(t)$, and a path $\ell(x)$ from t to $\Lambda(x)$ for every $x \in X$.

Define the map $\Lambda : X^* \to T_t$ inductively by the rule:

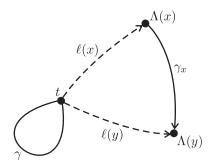
 $\Lambda(xv)$ is the end of the $f^{|v|}$ -lift of $\ell(x)$ starting at $\Lambda(v)$.

The map $\Lambda : X^* \to T_t$ is an isomorphism of rooted trees.

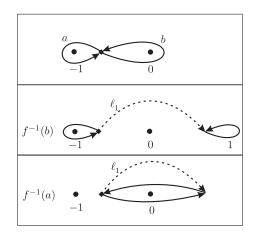
The isomorphism $\Lambda : X^* \to T_t$ conjugates the iterated monodromy action of $\pi_1(\mathcal{M}, t)$ on T_t to a self-similar action

$$\gamma(\mathbf{x}\mathbf{v})=\mathbf{y}\delta(\mathbf{v}),$$

where $v \in X^*, x \in X$ and δ is the loop $\ell(x)\gamma_x\ell(y)^{-1}$



IMG $(z^2 - 1)$



Contracting groups

Definition

A self-similar group G is called *contracting* if there exists a finite set $\mathcal{N} \subset G$ such that for every $g \in G$ there exists n such that $g|_v \in \mathcal{N}$ whenever $|v| \geq n$.

The smallest set ${\cal N}$ satisfying this property is called the $\mathit{nucleus}$ of the group.

Let (G, X) be a finitely generated self-similar group. The number

$$\rho = \limsup_{n \to \infty} \sqrt[n]{\limsup_{l(g) \to \infty} \max_{v \in X^n} \frac{l(g|_v)}{l(g)}}$$

is the contraction coefficient.

Proposition

The action is contracting if and only if its contraction coefficient ρ is less than 1.

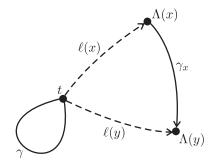
Recall that a self-similar action of \mathbb{Z}^n defined by a matrix A and a coset transversal r_1, r_2, \ldots, r_d is given by the rule

$$g + (r_{i_0} + A(r_{i_1}) + A^2(r_{i_2}) + \cdots) = r_{j_0} + A(h + r_{i_1} + A(r_{i_2}) + \cdots),$$

where $h = A^{-1}(g + r_{i_0} - r_{j_0})$.

It follows that this action is contracting if and only if the spectral radius of A^{-1} is less than one.

If $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is an expanding covering, then IMG (f) is contracting.



In particular, if $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is a *post-critically finite* rational function, then IMG (f) is contracting.

The Grigorchuk group

is contracting with $\rho = 1/2$.

Let $A \leq Symm(X)$ be a 2-transitive permutation group on X, |X| > 2. Fix $x_1, x_2 \in X$.

The group W(A) is generated by A acting on the first letter of words from X^* and by the set \overline{A} of the transformations

$$\overline{\alpha}(x_1w) = x_1\overline{\alpha}(w), \quad \overline{\alpha}(x_2w) = x_2\alpha(w), \quad \overline{\alpha}(x_iw) = x_iw.$$

L. Bartholdi showed that W(A) for A = PSL(3,2) acting on $P^2 \mathbb{F}_2$ has non-uniform exponential growth.

Germs

Definition

Let G be a group acting on a locally finite rooted tree T. For $w \in \partial T$ the group of germs is

$$G_{(w)} = G_w / \{g \in G_w : g \text{ acts trivially on a nbhd of } w\}.$$

If G is contracting, then $|G_{(w)}| \leq |\mathcal{N}|$ for all $w \in \partial X^* = X^{\omega}$.

Free groups acting on rooted trees

Theorem

Let G be a group acting faithfully on a locally finite rooted tree T. Then one of the following is true

- G has no free subgroups,
- 2 $G_{(w)}$ has a free subgroup for some $w \in \partial T$,
- So there is a free subgroup F < G and $w \in \partial T$ such that $F_w = \{1\}$.

Let G be a finitely generated group acting on a set A. Growth degree of the G-action is

$$\gamma = \sup_{w \in A} \limsup_{r \to \infty} \frac{\log |\{g(w) : I(g) \le r\}|}{\log r}.$$

Proposition

Let (G, X) be contracting. Then the growth degree of the action of G on X^{ω} is $\leq \frac{\log |X|}{-\log \rho}$.

Corollary

Contracting groups have no free subgroups.

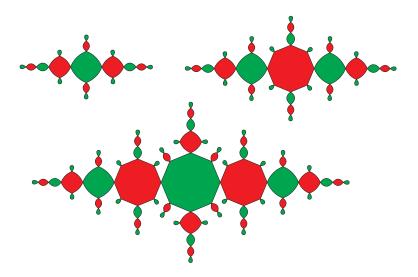
Schreier graphs

Let (G, X) be a finitely generated contracting group. The *Schreier graphs* $\Gamma_n = \Gamma_n(G, S)$ are the graphs with the set of vertices X^n where v is connected to s(v) for all $v \in X^n$ and $s \in S$.

The Schreier graphs of contracting groups seem to converge as $n \to \infty$ to fractals.

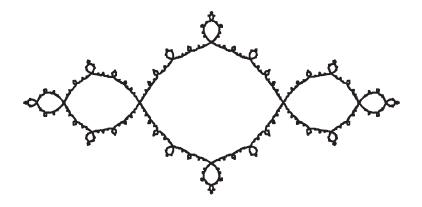
Limit spaces

Graphs for IMG $(z^2 - 1)$.

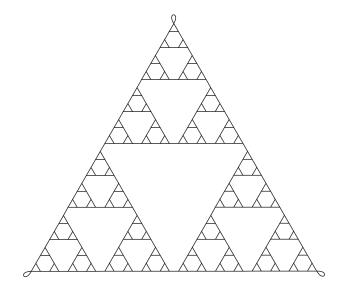


Limit spaces

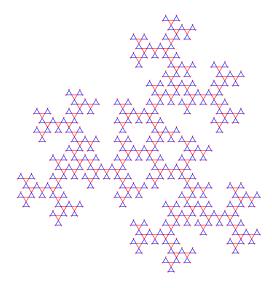
Julia set of $z^2 - 1$.



"Hanoi tower" group

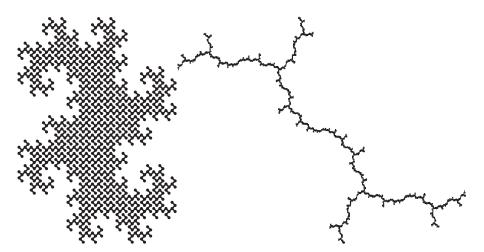


"Gupta-Fabrikowski group"



Limit spaces

IMG $(z^2 - 0.2282... + 1.1151...i)$



Real numeration systems

If $A \in M_{n \times n}(\mathbb{Z})$ is an expanding matrix and r_1, r_2, \ldots, r_d is a coset transversal of $\mathbb{Z}^n / A(\mathbb{Z}^n)$, then every series

$$r + A^{-1}(r_{i_1}) + A^{-2}(r_{i_2}) + \cdots$$

converges in \mathbb{R}^n , and we get an "A-adic" numeration system on \mathbb{R}^n .

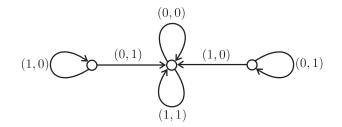
Limit space \mathcal{J}_G

Consider the space $X^{-\omega}$ of the left-infinite words $\dots x_2 x_1$. Fix a self-similar group *G*. Two sequences $\dots x_2 x_1, \dots y_2 y_1$ are equivalent if there exists a finite set $A \subset G$ and a sequences $g_k \in A$ such that

$$g_k(x_k\ldots x_1)=y_k\ldots y_1.$$

for all k.

The quotient of $X^{-\omega}$ by this equivalence relation is the *limit space* \mathcal{J}_G . The equivalence relation is invariant under the shift $\ldots x_2 x_1 \mapsto \ldots x_3 x_2$, hence the shift induces a continuous map $s : \mathcal{J}_G \longrightarrow \mathcal{J}_G$, called the *limit dynamical system*. The *Moore diagram* of the nucleus \mathcal{N} of a contracting group is the labeled graph with the set of vertices \mathcal{N} , where g is connected to $g|_x$ by an arrow labeled by (x, g(x)).



is the Moore diagram of the adding machine action.

Proposition

Sequences $\ldots x_2x_1, \ldots y_2y_1 \in X^{-\omega}$ are equivalent if and only if there exists a path $\ldots e_2e_1$ in the Moore diagram of the nucleus \mathcal{N} such that the arrow e_n is labeled by (x_n, y_n) .

Elementary properties

The limit space \mathcal{J}_{G} is metrizable, finite-dimensional, compact.

It is connected if the group G is level-transitive.

It is locally connected if the group G is self-replicating.

Julia sets and limit spaces

If $f : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is an *expanding* partial self-covering, then IMG (f) is contracting and $(\mathcal{J}_{IMG(f)}, s)$ is topologically conjugate to (\mathcal{J}_f, f) , where \mathcal{J}_f is the set of accumulation points of the inverse orbit

$$\bigcup_{n\geq 0}f^{-n}(t),$$

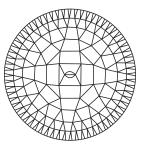
i.e., the support of the measure of maximal entropy.

A choice of connecting paths provides a symbolic presentation of the limit dynamical system.

In particular, the limit space of the A-adic adding machine action of \mathbb{Z}^n (if A is expanding) is $\mathbb{R}^n/\mathbb{Z}^n$, since this action is the iterated monodromy group of the self-covering of $\mathbb{R}^n/\mathbb{Z}^n$ induced by A.

Limit spaces as Gromov boundaries

Let a contracting group G be generated by a finite set S. Consider the graph with the set of vertices X^{*} where a vertex v is connected to s(v) for $s \in S$ and to xv for $x \in X$.



This graph is Gromov hyperbolic and its boundary is homeomorphic to $\mathcal{J}_{\mathcal{G}}$.

Limit G-space

Let (G, X) be a contracting group. Consider the topological space $X^{-\omega} \times G$ and take its quotient by the equivalence relation

$$\dots x_2 x_1 \cdot g \sim \dots y_2 y_1 \cdot h$$
 iff

$$g_k(x_k\ldots x_2x_1)=y_k\ldots y_2y_1, \quad g_k|_{x_k\ldots x_2x_1}g=h$$

for some bounded sequence $\{g_k\}$. The condition can be written as

$$g_k(x_k\ldots x_2x_1g(w))=y_k\ldots y_2y_1h(w)$$

for all $w \in X^*$.

- The quotient \mathcal{X}_G of $X^{-\omega} \times G$ is called the *limit G-space*.
- The group G acts on \mathcal{X}_G by a natural right action. This action is proper and co-compact.
- The space \mathcal{X}_G is locally compact, metrizable and finite-dimensional. It is connected and locally connected if (G, X) is self-replicating.

In the case of the A-adic adding machine action, the limit G-space of \mathbb{Z}^n is \mathbb{R}^n with the natural action.

The symbolic representation of the points of $\mathcal{X}_{\mathbb{Z}^n}$ as $\ldots x_2 x_1 \cdot g$ corresponds to the representation of the points of \mathbb{R}^n as series

$$g + A^{-1}(r_{i_1}) + A^{-2}(r_{i_2}) + \cdots$$

The image of the set $X^{-\omega} \cdot 1$ in \mathcal{X}_G is called the *tile* \mathcal{T} of the group (G, X). We have

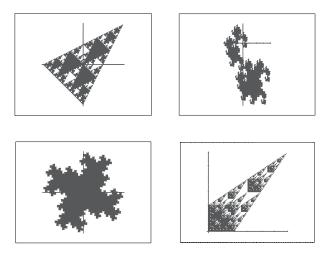
$$\mathcal{X}_{\mathcal{G}} = \bigcup_{g \in \mathcal{G}} \mathcal{T} \cdot g.$$

If for every $g \in G$ there exists $v \in X^*$ such that $g|_v = 1$, then tiles $T \cdot g$ have disjoint interiors and are closures of their interiors.

A tile of a \mathbb{Z}^2 action

ŝ 6

Some other tiles of \mathbb{Z}^2 actions



Proposition

The tile \mathcal{T} is the quotient of the space $X^{-\omega}$ by the equivalence relation identifying $\ldots x_2 x_1$ and $\ldots y_2 y_1$ if there is a path $\ldots e_2 e_1$ in the Moore diagram of \mathcal{N} ending in identity and such that e_n is labeled by (x_n, y_n) .

Proposition

Two tiles $T \cdot g$ and $T \cdot h$ intersect if and only if $gh^{-1} \in \mathcal{N}$.

Proposition

If for every $g \in G$ there exists $v \in X^*$ such that $g|_h = 1$, then ∂T is the intersection of T with $\bigcup_{g \neq 1} T \cdot g$. It consists of the images of sequences $\ldots x_2 x_1 \cdot 1$ such that there exists a path $\ldots e_2 e_1$ in the Moore diagram of the nucleus ending in a non-trivial element of N and such that for all k the arrow e_k is labeled by (x_k, y_k) for some y_k .

For given $v \in X^*$ and $g \in G$ the corresponding tile $\mathcal{T} \cdot v \cdot g$ is the image of the sequences $\ldots x_{n+1}v \cdot g$.

The tile $\mathcal{T} \cdot \mathbf{v} \cdot \mathbf{g}$ is homeomorphic to the tile \mathcal{T} and

$$\mathcal{T} = \bigcup_{\mathbf{v}\in\mathsf{X}^n}\mathcal{T}\cdot\mathbf{v}.$$

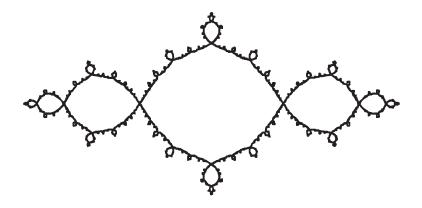
For $\xi \in \mathcal{X}_{\mathcal{G}}$ the set

$$U_n(\xi) = \bigcup_{\mathbf{v} \cdot \mathbf{g} \in \mathsf{X}^n \times G, \xi \in \mathcal{T} \cdot \mathbf{v} \cdot \mathbf{g}} \mathcal{T} \cdot \mathbf{v} \cdot \mathbf{g}$$

is a neighborhood of ξ and $\{U_n(\xi) : n \ge 0\}$ is a basis of neighborhoods of ξ .

If $\partial \mathcal{T}$ is finite, then \mathcal{J}_G and \mathcal{X}_G are topologically one dimensional.

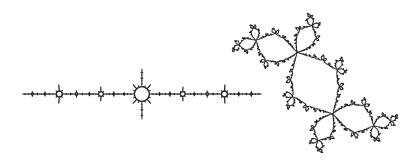
"Basilica".



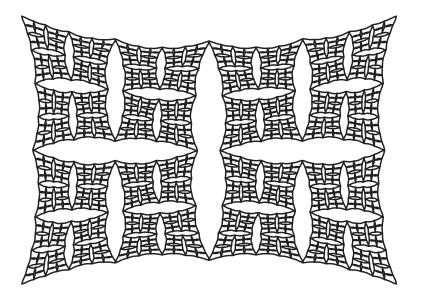
V. Nekrashevych (Texas A&M)

July 9-13, 2007, ESI, Vienna 45 / 68

"Airplane and Rabbit"



V. Nekrashevych (Texas A&M)

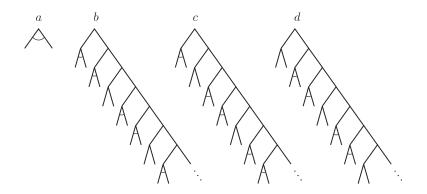


An automorphism g of the tree X^{*} is *finitary* if there exists n such that $g|_{v} = 1$ for all $v \in X^{n}$. The smallest n is called *finitary depth* of g.

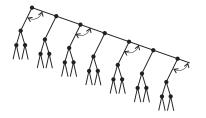
An automorphism g is called *directed* if there exists n and a path $w \in X^{\omega}$ such that $g|_{v}$ is finitary of depth $\leq n$ if v is not a beginning of w.

An automorphism g of X^{*} is *bounded* if there exists n such that $g|_v$ is either finitary or directed for $v \in X^n$. The set of bounded automorphisms of X^{*} is a group.

Grigorchuk group



IMG $(z^2 - 1)$



V. Nekrashevych (Texas A&M)

July 9-13, 2007, ESI, Vienna 50 / 68

An automorphism g of X^{*} is *automatic* if the set $\{g|_{v} : v \in X^*\}$ is finite.

Theorem (E. Bondarenko, V.N.)

A self-similar group of bounded automatic automorphisms of X^{*} is contracting and has finite boundary of the tile $T \subset X_G$. If a contracting group (G,X) satisfies the "open set condition" and has finite boundary of the tile, then it consists of bounded automatic automorphisms of X^{*}. The group of bounded automorphisms of X^* has no free subgroups. Is it amenable?

Theorem (L. Bartholdi, B. Virag, V. Kaimanovich, V.N.) The group of bounded automatic automorphisms of X^{*} is amenable.

Corollary

Iterated monodromy groups of post-critically finite polynomials are amenable.

Sketch of the proof

Notation:

$$a = \pi(a_0, a_1, \ldots, a_{d-1})$$

for $\pi \in \textit{Symm}(\mathsf{X})$ and $\mathsf{X} = \{0, 1, 2, \dots, d-1\}$ means

$$a(iw) = \pi(i)a_i(w).$$

It is sufficient to prove the theorem for finitely generated subgroups G of the group of bounded automatic automorphisms. Passing to sections and replacing X by Xⁿ, we may assume that the generators of G are either elements of Symm(X) (acting on the first letter) or of the form

$$a=\pi(a_0,\ldots,a_{d-1}),$$

where $a_x = a$ for some x and $a_i \in Symm(X)$ for $i \neq x$.

Conjugating by

$$\delta = (\delta, \varsigma^{-1}\delta, \varsigma^{-2}\delta, \dots, \varsigma^{-(d-1)}\delta),$$
where $\varsigma = (0, 1, \dots, d-1)$, we get

$$\delta a \delta^{-1} = (\delta, \varsigma^{-1}\delta, \dots, \varsigma^{-(d-1)}\delta)\pi(a_0, \dots, a_{d-1})(\delta^{-1}, \delta^{-1}\varsigma, \dots, \delta^{-1}\varsigma^{d-1})$$

$$= \pi(\varsigma^{-\pi(0)}\delta a_0\delta^{-1}, \varsigma^{-\pi(1)}\delta a_1\delta^{-1}\varsigma, \dots, \varsigma^{-\pi(d-1)}\delta a_{d-1}\delta^{-1}\varsigma^{d-1}).$$
Note that the coordinate number x is $\varsigma^{-\pi(x)}\delta a\delta^{-1}\varsigma^x$, which is

$$\varsigma^{-\pi(x)}\pi\varsigma^x(\varsigma^{-\pi(x)}\delta a\delta^{-1}\varsigma^x, \dots, \varsigma^{-\pi(x+d-1)}\delta a_{x+d-1}\delta^{-1}\varsigma^{x+d-1}),$$
and that $\varsigma^{-\pi(x)}\pi\varsigma^x(0) = 0.$

V. Nekrashevych (Texas A&M)

If $a \in Symm(X)$, then $\delta a \delta^{-1}$ is finitary of depth ≤ 2 . Hence, passing again to X², we may assume that the generators of G either belong to Symm(X), or are of the form

$$\mathsf{a}=\pi(\mathsf{a},\mathsf{a}_1,\ldots,\mathsf{a}_{d-1})$$

for $a_i \in Symm(X)$ and $\pi \in Symm(X)$ such that $\pi(0) = 0$.

The set of automorphisms of X^{*} of the second type form a group *B* isomorphic to $Symm(X) \wr Symm(X \setminus 0)$. We denote A = Symm(X).

Let M(X) be the group generated by A and B.

We have proved

Proposition

Any finitely generated group of bounded automatic automorphisms of X^* can be embedded as a subgroup into $M(X^n) \wr Symm(X^n)$.

Hence it is sufficient to show that M(X) is amenable for every X.

Let m_A and m_B be the uniform probability measures on the finite groups A = Symm(X) and $B = Symm(X) \wr Symm(X \setminus 0)$. Consider their convolution $\mu = m_B * m_A$ and consider the corresponding random walk on M(X).

By self-similarity of M(X) we get a natural Markov chain on $X \cdot M(X)$:

 $(i,g) \mapsto (h(i), h|_i \cdot g)$ with probability $\mu(h)$.

Projection of this chain onto X is a sequence of independent X-valued random variables. Projection onto G is the random walk determined by the measure

$$\widetilde{u}=rac{d-1}{d}m_A+rac{1}{d}m_B.$$

Considering the projections we conclude that

$$H(\mu^{*n}) \leq dH(\widetilde{\mu}^{*n}) + d\log d,$$

hence $h(M(X), \mu) \leq dh(M(X), \widetilde{\mu})$.

On the other side, using that m_A and m_B are idempotents, one can estimate

$$h(M(\mathsf{X}),\widetilde{\mu}) \leq \frac{d-1}{d^2}h(M(\mathsf{X}),\mu),$$

hence $h(M(X), \mu) \leq \frac{d-1}{d}h(M(X), \mu)$, i.e., $h(\mu) = 0$, which implies amenability of M(X).

The Markov chain on $X \times G$ is described by the transition matrix

$$M = \left(\mu_{xy}\right)_{x,y \in \mathsf{X}},$$

where $\mu_{xy}(h)$ is the probability of the transition from $y \cdot g$ to $x \cdot hg$. In general, if $a = \sum_{g \in G} \alpha_g g \in \mathbb{C}[G]$, then the corresponding matrix $\phi(a) = (a_{xy})_{x,y \in X}$ is given by

$$a_{xy} = \sum_{g(y)=x} \alpha_g g|_y.$$

The map $\phi : \mathbb{C}[G] \longrightarrow M_{d \times d}(\mathbb{C}[G])$ is a homomorphism of algebras called the *matrix recursion*.

For example, in the case of the binary adding machine the recursion is

$$a\mapsto \left(egin{array}{cc} 0 & a \ 1 & 0 \end{array}
ight).$$

For $\mathrm{IMG}\left(z^2-1\right)$ we have

$$a\mapsto \left(egin{array}{cc} 0 & b \ 1 & 0 \end{array}
ight), \quad b\mapsto \left(egin{array}{cc} 1 & 0 \ 0 & a \end{array}
ight)$$

since

$$a(0w) = 1w$$
, $a(1w) = 0b(w)$, $b(0w) = 0w$, $b(1w) = 1a(w)$.

The Cuntz-Pimsner algebra $\mathcal{O}_G = \mathcal{O}_{(G,X)}$ of a self-similar group (G,X) is the universal C*-algebra generated by G and S_x (for $x \in X$) satisfying

- relations of G;
- Q Cuntz algebra relations

$$S_x^*S_x = 1, \qquad \sum_{x\in\mathsf{X}}S_xS_x^* = 1;$$

Solution for all g ∈ G, x ∈ X:
$$g \cdot S_x = S_y \cdot h$$
whenever g(xw) = yh(w) for all w.

The action of a self-similar group G on X^{*} extends naturally onto the boundary X^{ω}. We get in this way a natural unitary representation of G on $L^2(X^{\omega})$.

There is also a natural representation of the Cuntz algebra on $L^2(X^{\omega})$ induced by the transformations

 $T_x: w \mapsto xw.$

The condition g(xw) = yh(w) is equivalent to

$$g \cdot T_x = T_y \cdot h.$$

Hence we get a representation of \mathcal{O}_G .

Let $f : \mathcal{X}_1 \longrightarrow \mathcal{X}$ be an expanding covering of a space by a subset. Choose $t \in \mathcal{C}$ and consider

$$T_f = \bigsqcup_{n \ge 0} f^{-n}(t).$$

 $\mathcal{O}_{\text{IMG}(f)}$ is the universal C*-algebra generated by S_{γ} , where γ are homotopy classes of paths connecting the points of T_f , satisfying

$$S_{\gamma} = \sum_{\delta \in f^{-1}(\gamma)} S_{\delta}.$$

Define for $z \in \mathbb{C}, |z| = 1$

$$\Gamma_z(g) = g$$

for all $g \in G$ and

$$\Gamma_z(S_x)=zS_x$$

for all $x \in X$.

We get a *gauge* action of the circle on \mathcal{O}_G .

The algebra of fixed points of the gauge action is the closed linear span of

$$S_v g S_u^*$$
, for $|v| = |u|$.

We denote it \mathcal{M}_G .

Proposition

The gauge invariant sub-algebra \mathcal{M}_{G} is isomorphic to the inductive limit of

$$C^*(G) \longrightarrow M_d(C^*(G)) \longrightarrow M_{d^2}(C^*(G)) \longrightarrow \cdots,$$

where the homomorphism are induced by the matrix recursions.

Theorem

If the self-similar group (G, X) is contracting (e.g., it is IMG (f) for an expanding f), then \mathcal{O}_G is defined by a finite number of relations.

For example, $\mathcal{O}_{\mathrm{IMG}(f)}$, where f is a hyperbolic quadratic polynomial is generated by the Cuntz algebra $\mathcal{O}_2 = \langle S_0, S_1 \rangle$ and one unitary a such that

$$a = S_1 S_0^* + S_0 (1 - S_v S_v^* + S_v a S_v^*) S_1^*.$$

Theorem

If (G, X) is a regular (i.e., the groups of germs are trivial) contracting self-similar group, then \mathcal{O}_G is simple, purely infinite, nuclear.

Theorem

Let f be a hyperbolic rational function of degree d. Denote by c the number of attracting cycles of f, by k the sum and by l the greatest common divisor of their lengths.

Then

$$\mathcal{K}_0(\mathcal{M}_{\mathrm{IMG}(f)}) = \mathbb{Z}[1/d], \qquad \mathcal{K}_1(\mathcal{M}_{\mathrm{IMG}(f)}) = \mathbb{Z}^{k-1}$$

and

$$\mathcal{K}_0(\mathcal{O}_{\mathrm{IMG}(f)}) = \mathbb{Z}/(d-1)\mathbb{Z} \oplus \mathbb{Z}^{c-1}, \qquad \mathcal{K}_1(\mathcal{O}_{\mathrm{IMG}(f)}) = \mathbb{Z}/I\mathbb{Z} \oplus \mathbb{Z}^{c-1}.$$

Theorem

Let f_1, f_2 be hyperbolic rational functions. Then the following two conditions are equivalent.

- The C*-dynamical systems (O_{IMG(f1)}, Γ_z) and (O_{IMG(f2)}, Γ_z) are conjugate.
- **2** The topological dynamical systems (J_{f_1}, f_1) and (J_{f_2}, f_2) are conjugate, where J_{f_i} are the Julia sets of f_i , i.e., the closure of the set of repelling cycles of f_i .