Iterated monodromy groups

Volodymyr Nekrashevych

Gaeta, Italy

May 31-June 6, 2003.

 \mathcal{M} — an arcwise connected and locally arcwise connected topological space (or an *orbispace*)

 \mathcal{M}_1 — its open arcwise connected subset (resp. sub-orbispace).

 $f: \mathcal{M}_1 \to \mathcal{M}$ — a *d*-fold covering map.

 $t \in \mathcal{M}$ — a basepoint.

Preimage tree T_t .

The action on T_t is an action by automorphisms of the rooted tree.

Definition. The quotient of the fundamental group $\pi_1(\mathcal{M}, t)$ by the kernel of the action is called the *iterated monodromy group* IMG(f) of the covering f.

The group IMG(f) and its action on the tree T_t depends only on f.

Computation of IMG(f)

Choose an alphabet X, |X| = d, a bijection $\Lambda : X \to f^{-1}(t)$, and a path ℓ_x from t to $\Lambda(x)$ for every $x \in X$.

 X^* is the rooted tree of finite words, where a word $v \in X^*$ is connected to vx, $\forall x \in X$.

Define the map $\Lambda : X^* \to T_t$ inductively by the <u>rule:</u>

The map $\Lambda : X^* \to T_t$ is an isomorphism of rooted trees.

The isomorphism $\Lambda : X^* \to T_t$ conjugates the iterated monodromy action of $\pi_1(\mathcal{M}, t)$ on T_t to a self-similar action on X^* defined by the formula

$$(xv)^{\gamma} = y\left(v^{\ell_x \gamma_x \ell_y^{-1}}\right),$$

where $v \in X^*, x \in X$ and

This is the standard action of IMG(f) on X^* .

Examples

1. $f(z) = z^2$ with $\mathcal{M} = \mathbb{C} \setminus \{0\}$ and $\mathcal{M}_1 = \mathcal{M}$.

Let $X = \{0, 1\}$ and t = 1. The fundamental group of \mathcal{M} is generated by a single loop τ around 0.

We take ℓ_0 is trivial at t, $\ell_1 = \tau_0$.

Then

5

1.
$$f(z) = z^2 - 1$$
 with $\mathcal{M} = \mathbb{C} \setminus \{0, -1\}$ and
 $\mathcal{M}_1 = \mathbb{C} \setminus \{0, -1, 1\}.$

Let $t = \frac{1-\sqrt{5}}{2}$. The fundamental group of \mathcal{M} is generated by two loops a and b.

$$(0v)^{a} = 1v^{b}, \qquad (1v)^{a} = 0v$$
$$(0v)^{b} = 0v^{a}, \qquad (1v)^{b} = 1v.$$

6

Theorem. [R. Grigorchuk, A. Żuk] The group $G = IMG(z^2 - 1)$

- is torsion free;
- has exponential growth;
- is just non-solvable;
- has solvable word and conjugacy problems;
- has no free subgroups.

Theorem. [L. Bartholdi]

$$G = \left\langle a, b \left| \left[\left[a^{2^{k}}, b^{2^{k}} \right], b^{2^{k}} \right], \left[\left[b^{2^{k}}, a^{2^{k+1}} \right], a^{2^{k+1}} \right] \right\rangle.$$

Limit spaces

Let (G, X^*) be a self-similar *contracting* group action. Denote by $X^{-\omega}$ the space of all sequences

 $\dots x_3 x_2 x_1, \qquad x_i \in X$

with the product topology.

 $\dots x_2 x_1 \approx \dots y_2 y_1$ if there exists a bounded sequence $g_n \in G$ such that

$$(x_n x_{n-1} \dots x_1)^{g_n} = (y_n y_{n-1} \dots y_1).$$

 $X^{-\omega} \approx i$ s the *limit space* \mathcal{J}_G .

The shift $\ldots x_3 x_2 x_1 \mapsto \ldots x_4 x_3 x_2$ induces a continuous map s : $\mathcal{J}_G \to \mathcal{J}_G$. We get the *limit dynamical system* (\mathcal{J}_G, s) .

The space \mathcal{J}_G has a natural structure of an orbispace such that s is a |X|-fold covering by an open sub-orbispace of \mathcal{J}_G .

Theorem 1. Let $f : \mathcal{M}_1 \to \mathcal{M}$ be an expanding covering. Then the standard action of IMG (f) on X^* is contracting and the restriction of f onto its Julia set is topologically conjugate to the limit dynamical system $(\mathcal{J}_G, \mathbf{s})$.

An example. The Julia set of z^2 is the unit circle, and z^2 acts on it as a double covering. The automaton generating the adding machine action generates the equivalence relation:

 $\dots 0001 x_n x_{n-1} \dots x_1 \approx \dots 1110 x_n x_{n-1} \dots x_1$ $\dots 0000 \approx 1111,$

i.e., the limit space is the circle \mathbb{R}/\mathbb{Z} and the map s is induced by $x \mapsto 2x$.

In general, if a rational function $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is *sub-hyperbolic*, then f is expanding on a neighborhood of the Julia set. (Orbispaces have to be used in many cases!)

We get finite-to-one encodings of the Julia set by sequences. They are *finite presentations* of the respective dynamical systems.

For example, the Julia set of the polynomial $z^2 - 1$ is the quotient of the space $\{0, 1\}^{-\omega}$ by the equivalence relation

 $\dots 0000001v \approx \dots 0101011v \approx \dots 1010100v$ $\dots 0000 \approx \dots 0101 \approx \dots 1010$

The Schreier graphs Γ_n of the action of the group IMG(f) on the sets X^n approximate the Julia set of f.

The following is an analog of theorems by M. Shub, J. Franks and M. Gromov and can be proved using Theorem 1 and M. Gromov's theorem on groups of polynomial groups.

Theorem 2. Let $f : \mathcal{M} \to \mathcal{M}$ be an expanding finite self-covering of a compact orbifold. Then there exists a nilpotent simplyconnected Lie group L, a proper affine action of $G = \pi_1(\mathcal{M})$ on L and an expanding automorphism $\phi : L \to L$ such that $\mathcal{M} = G \setminus L$, $\phi \cdot G \cdot \phi^{-1} < G$ and ϕ induces f.

IMG $(f) = \pi_1(\mathcal{M})$ and is virtually nilpotent. $(\mathcal{J}_{\mathsf{IMG}(f)}, \mathsf{s})$ is topologically conjugate to (\mathcal{M}, f) .

The encoding of the points of \mathcal{M} by sequences generalize the numeration systems on \mathbb{R} : the sequence $\ldots x_2 x_1$ corresponds to the point

$$\cdots \phi^{-2}(r_{x_3})\phi^{-1}(r_{x_2})r_{x_1} \in L$$

where $r_x \in L$ are "digits", indexed by $x \in X$.

Digit tile ${\mathcal T}$ is the set of elements

$$\cdots \phi^{-2}(r_{x_3})\phi^{-1}(r_{x_2})r_{x_1} \in L$$

for all possible sequences $\ldots x_2 x_1 \in X^{-\omega}$.

Some examples of digit tiles in \mathbb{R}^2 :

