Iterated monodromy groups

Volodymyr Nekrashevych

Gaeta, Italy

May 31-June 6, 2003.
\mathcal{M} - an arcwise connected and locally arcwise connected topological space (or an orbispace)
\mathcal{M}_{1} - its open arcwise connected subset (resp. sub-orbispace).
$f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ - a d-fold covering map.
$t \in \mathcal{M}$ - a basepoint.

Iterated monodromy action.

The action on T_{t} is an action by automorphisms of the rooted tree.

Definition. The quotient of the fundamental group $\pi_{1}(\mathcal{M}, t)$ by the kernel of the action is called the iterated monodromy group IMG (f) of the covering f.

The group IMG (f) and its action on the tree T_{t} depends only on f.

Computation of IMG (f)

Choose an alphabet $X,|X|=d$, a bijection $\wedge: X \rightarrow f^{-1}(t)$, and a path ℓ_{x} from t to $\wedge(x)$ for every $x \in X$.
X^{*} is the rooted tree of finite words, where a word $v \in X^{*}$ is connected to $v x, \forall x \in X$.

Define the map $\wedge: X^{*} \rightarrow T_{t}$ inductively by the rule:

$$
f^{-n}(t) \ni \wedge(v) \cdot \sim f^{-n}\left(\ell_{x}\right) \ni(v x)
$$

The map $\wedge: X^{*} \rightarrow T_{t}$ is an isomorphism of rooted trees.

The isomorphism $\wedge: X^{*} \rightarrow T_{t}$ conjugates the iterated monodromy action of $\pi_{1}(\mathcal{M}, t)$ on T_{t} to a self-similar action on X^{*} defined by the formula

$$
(x v)^{\gamma}=y\left(v^{\ell_{x} \gamma_{x} \ell_{y}^{-1}}\right),
$$

where $v \in X^{*}, x \in X$ and

This is the standard action of IMG (f) on X^{*}.

Examples

1. $f(z)=z^{2}$ with $\mathcal{M}=\mathbb{C} \backslash\{0\}$ and $\mathcal{M}_{1}=\mathcal{M}$.

Let $X=\{0,1\}$ and $t=1$. The fundamental group of \mathcal{M} is generated by a single loop τ around 0 .

We take ℓ_{0} is trivial at $t, \ell_{1}=\tau_{0}$.
Then

$$
(0 v)^{\tau}=1 v, \quad(1 v)^{\tau}=0 v^{\tau}
$$

$$
\text { 1. } \begin{aligned}
f(z)= & z^{2}-1 \text { with } \mathcal{M}=\mathbb{C} \backslash\{0,-1\} \text { and } \\
& \mathcal{M}_{1}=\mathbb{C} \backslash\{0,-1,1\} .
\end{aligned}
$$

Let $t=\frac{1-\sqrt{5}}{2}$. The fundamental group of \mathcal{M} is generated by two loops a and b.

$$
\begin{array}{ll}
(0 v)^{a}=1 v^{b}, & (1 v)^{a}=0 v \\
(0 v)^{b}=0 v^{a}, & (1 v)^{b}=1 v .
\end{array}
$$

Theorem. [R. Grigorchuk, A. Żuk] The group $G=\operatorname{IMG}\left(z^{2}-1\right)$

- is torsion free;
- has exponential growth;
- is just non-solvable;
- has solvable word and conjugacy problems;
- has no free subgroups.

> Theorem. [L. Bartholdi]
> $G=\left\langle a, b \mid\left[\left[a^{2^{k}}, b^{2^{k}}\right], b^{2^{k}}\right],\left[\left[b^{2^{k}}, a^{2^{k+1}}\right], a^{2^{k+1}}\right]\right\rangle$.

Limit spaces

Let $\left(G, X^{*}\right)$ be a self-similar contracting group action. Denote by $X^{-\omega}$ the space of all sequences

$$
\ldots x_{3} x_{2} x_{1}, \quad x_{i} \in X
$$

with the product topology.
$\ldots x_{2} x_{1} \approx \ldots y_{2} y_{1}$ if there exists a bounded sequence $g_{n} \in G$ such that

$$
\left(x_{n} x_{n-1} \ldots x_{1}\right)^{g_{n}}=\left(y_{n} y_{n-1} \ldots y_{1}\right) .
$$

$X^{-\omega} / \approx$ is the limit space \mathcal{J}_{G}.
The shift $\ldots x_{3} x_{2} x_{1} \mapsto \ldots x_{4} x_{3} x_{2}$ induces a continuous map s: $\mathcal{J}_{G} \rightarrow \mathcal{J}_{G}$. We get the limit dynamical system ($\left.\mathcal{J}_{G}, \mathrm{~s}\right)$.

The space \mathcal{J}_{G} has a natural structure of an orbispace such that s is a $|X|$-fold covering by an open sub-orbispace of \mathcal{J}_{G}.

Theorem 1. Let $f: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be an expanding covering. Then the standard action of IMG (f) on X^{*} is contracting and the restriction of f onto its Julia set is topologically conjugate to the limit dynamical system $\left(\mathcal{J}_{G}, \mathrm{~s}\right)$.

An example. The Julia set of z^{2} is the unit circle, and z^{2} acts on it as a double covering. The automaton generating the adding machine action generates the equivalence relation:

$$
\begin{aligned}
\ldots 0001 x_{n} x_{n-1} \ldots x_{1} & \approx \ldots 1110 x_{n} x_{n-1} \ldots x_{1} \\
\ldots 0000 & \approx 1111,
\end{aligned}
$$

i.e., the limit space is the circle \mathbb{R} / \mathbb{Z} and the map s is induced by $x \mapsto 2 x$.

In general, if a rational function $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is sub-hyperbolic, then f is expanding on a neighborhood of the Julia set. (Orbispaces have to be used in many cases!)

We get finite-to-one encodings of the Julia set by sequences. They are finite presentations of the respective dynamical systems.

For example, the Julia set of the polynomial $z^{2}-1$ is the quotient of the space $\{0,1\}^{-\omega}$ by the equivalence relation

$$
\begin{aligned}
& \ldots 0000001 v \approx \ldots 0101011 v \\
& \ldots 0000 \approx \ldots .01010100 v \\
& \ldots . .01010
\end{aligned}
$$

The Schreier graphs Γ_{n} of the action of the group IMG (f) on the sets X^{n} approximate the Julia set of f.

$z^{2}+i$

The following is an analog of theorems by M. Shub, J. Franks and M. Gromov and can be proved using Theorem 1 and M. Gromov's theorem on groups of polynomial groups.

Theorem 2. Let $f: \mathcal{M} \rightarrow \mathcal{M}$ be an expanding finite self-covering of a compact orbifold. Then there exists a nilpotent simplyconnected Lie group L, a proper affine action of $G=\pi_{1}(\mathcal{M})$ on L and an expanding automorphism $\phi: L \rightarrow L$ such that $\mathcal{M}=G \backslash L$, $\phi \cdot G \cdot \phi^{-1}<G$ and ϕ induces f.

IMG $(f)=\pi_{1}(\mathcal{M})$ and is virtually nilpotent. $\left(\mathcal{J}_{\mathrm{IMG}(f)}, \mathrm{s}\right)$ is topologically conjugate to (\mathcal{M}, f).

The encoding of the points of \mathcal{M} by sequences generalize the numeration systems on \mathbb{R} : the sequence $\ldots x_{2} x_{1}$ corresponds to the point

$$
\cdots \phi^{-2}\left(r_{x_{3}}\right) \phi^{-1}\left(r_{x_{2}}\right) r_{x_{1}} \in L
$$

where $r_{x} \in L$ are "digits", indexed by $x \in X$.

Digit tile \mathcal{T} is the set of elements

$$
\cdots \phi^{-2}\left(r_{x_{3}}\right) \phi^{-1}\left(r_{x_{2}}\right) r_{x_{1}} \in L
$$

for all possible sequences $\ldots x_{2} x_{1} \in X^{-\omega}$.

Some examples of digit tiles in \mathbb{R}^{2} :

