Iterated Monodromy Groups Lecture 1

Volodymyr Nekrashevych

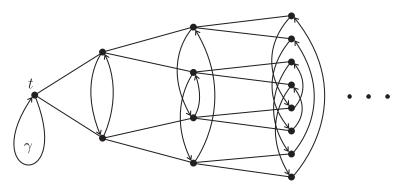
August, 2009 Bath

Outline

- Main definition.
- Occupation of iterated monodromy groups.
- Solution Virtual endomorphisms and self-similar groups.
- Limit spaces.
- Examples and applications.

Definition

Let $p: \mathcal{M}_1 \longrightarrow \mathcal{M}$ be a covering of a space by a subset (a *partial* self-covering).



Double self-covering of the circle

Consider the map $p: x \mapsto 2x$ of the circle \mathbb{R}/\mathbb{Z} .

The fundamental group of the circle is generated by the loop γ equal to the image of [0, 1] in \mathbb{R}/\mathbb{Z} .

The lifts of γ by p^n are the images of $\left[\frac{m}{2^n}, \frac{m+1}{2^n}\right]$, for $m = 0, \dots, 2^n - 1$.

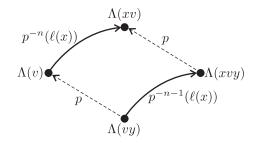
Encoding of the tree

Choose an alphabet X, $|X| = \deg p$, a bijection $\Lambda : X \to p^{-1}(t)$, and a path $\ell(x)$ from t to $\Lambda(x)$ for every $x \in X$.

Define the map $\Lambda : X^* \to T$ inductively by the rule:

 $\Lambda(xv)$ is the end of the $p^{|v|}$ -lift of $\ell(x)$ starting at $\Lambda(v)$.

The map $\Lambda : X^* \to T$ is an isomorphism of rooted trees, where v is connected to vy in X^* .



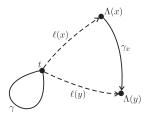
Recurrent formula

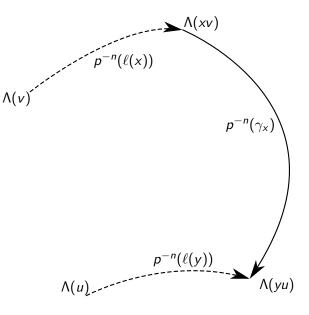
Let us identify the trees T and X^{*} using the isomorphism Λ . Then the iterated monodromy group acts on the tree X^{*}. Let γ be an element of the fundamental group $\pi_1(\mathcal{M}, t)$.

Proposition

For $x \in X$, let γ_x be the lift of γ by p starting at $\Lambda(x)$. Let $y \in X$ be such that $\Lambda(y)$ is the end of γ_x . Then for every $v \in X^*$ we have

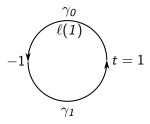
$$\gamma(xv) = y\left(\ell(x)\gamma_x\ell(y)^{-1}\right)(v).$$





Example: z^2

 $p: z \mapsto z^2$ induces a double self-covering of $\mathbb{C} \setminus \{0\}$ (homotopically equivalent to the 2-fold self-covering of the circle). Chose the basepoint t = 1. $p^{-1}(1) = \{1, -1\}$. Let $\ell(0)$ be trivial, and let $\ell(1)$ be the unit upper half-circle. Let γ be the unit circle based at t with the positive orientation.



We get $\gamma(0v) = 1v$, $\gamma(1v) = 0\gamma(v)$. This is known as the *adding* machine.

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

A rational function $f(z) \in \mathbb{C}(z)$ is *post-critically finite* if orbit of every critical point of f is finite. The union P_f of the orbits of critical values is the *post-critical set* of f.

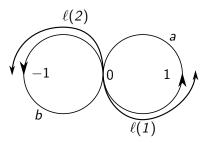
If f is post-critically finite, then it is a partial self-covering of $\widehat{\mathbb{C}} \setminus P_f$.

Consider $f(z) = -\frac{z^3}{2} + \frac{3z}{2}$. It has three critical points $\infty, 1, -1$, which are fixed under f.

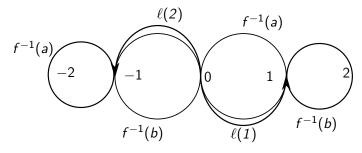
Hence it is post-critically finite and is a covering of $\mathbb{C} \setminus \{\pm 1\}$ by the subset $\mathbb{C} \setminus f^{-1}(\{\pm 1\}) = \mathbb{C} \setminus \{\pm 1, \pm 2\}.$

Example:
$$-\frac{z^3}{2} + \frac{3z}{2}$$

Let t = 0. It has three preimages $0, \pm \sqrt{3}$. Choose the following connecting paths and generators of $\pi_1(\mathbb{C} \setminus \{\pm 1\}, 0)$ ($\ell(0)$ is trivial):



The generators *a* and *b* are lifted to the following paths:



 $a(0v) = 1v, \quad a(1v) = 0a(v), \quad a(2v) = 2v, \\ b(0v) = 2v, \quad b(1v) = 1v, \quad b(2v) = 0b(v).$

A multi-dimensional example

Consider the map F of \mathbb{C}^2 :

$$(x,y)\mapsto\left(1-rac{y^2}{x^2},1-rac{1}{x^2}
ight)$$

It can be naturally extended to the projective plane.

$$(x:y:z)\mapsto (x^2-y^2:x^2-z^2:x^2).$$

The set $\{x = 0\} \cup \{y = 0\} \cup \{z = 0\}$ is the critical locus. The post-critical set is the union of the line at infinity with the lines x = 0, x = 1, y = 0, y = 1, x = y. They are permuted as follows:

$$\{x=0\}\mapsto\{z=0\}\mapsto\{y=1\}\mapsto\{x=y\}\mapsto\{x=0\}$$

$$\{y=0\}\mapsto\{x=1\}\mapsto\{y=0\}.$$

The iterated monodromy group of F (as computed by J. Belk and S. Koch) is generated by the transformations:

$$\begin{split} a(1v) &= 1b(v), \quad a(2v) = 2v, \quad a(3v) = 3v, \quad a(4v) = 4b(v), \\ b(1v) &= 1c(v), \quad b(2v) = 2c(v), \quad b(3v) = 3v, \quad b(4v) = 4v, \\ c(1v) &= 4d(v), c(2v) = 3(ceb)^{-1}(v), c(3v) = 2(fa)^{-1}(v), c(4v) = 1v, \\ d(1v) &= 2v, \quad d(2v) = 1a(v), \quad d(3v) = 4v, \quad d(4v) = 3a(v), \\ e(1v) &= 1f(v), \quad e(2v) = 2v, \quad e(3v) = 3f(v), \quad e(4v) = 4v, \\ f(1v) &= 3b^{-1}(v), \quad f(2v) = 4v, \quad f(3v) = 1eb(v), \quad f(4v) = 2e(v). \end{split}$$

We have seen that for every $g \in \text{IMG}(p)$ and for every $x \in X$ there exists $y \in X$ and $g_x \in \text{IMG}(p)$ such that

$$g(xv) = yg_x(v)$$

for all $v \in X^*$.

Groups satisfying this condition are called *self-similar*.

The map $\pi_g : x \mapsto y$ is a permutation (describing the action of g on the first level of the tree. Hence we get a map

$$g \mapsto \pi_g(g_1, g_2, \ldots, g_d),$$

from IMG (p) to $S_d \wr IMG(p)$, where $X = \{1, 2, ..., d\}$. It is easy to check that this map is a homomorphism.

Definition

A wreath recursion on a group G is a homomorphism

$$\Phi: G \longrightarrow S_d \wr G.$$

The wreath defining IMG (p) depends on the choice of the bijection of X with $p^{-1}(t)$ and on the choice of the connecting paths $\ell(x)$. Different choices produce wreath recursions, which differ from each other by application of an inner automorphism of $S_d \wr G$.

We say that $\Phi_1, \Phi_2 : G \longrightarrow S_d \wr G$ are *equivalent* if there exists an inner automorphism τ of $S_d \wr G$ such that $\Phi_2 = \tau \circ \Phi_1$.

Every wreath recursion defines an action on the tree $\{1, 2, ..., d\}^*$. If $\Phi(g) = \pi(g_1, g_2, ..., g_d)$ then

$$g(iv) = \pi(i)g_i(v)$$

for all $v \in \{1, 2, \dots, d\}^*$ and $x \in \{1, 2, \dots, d\}$.

These recurrent rules uniquely define the action of G associated with Φ .

The associated faithful self-similar group is the quotient of G by the kernel of the action. Equivalent wreath recursions define conjugate self-similar groups.

If G is generated by a finite set $\{g_1, g_2, \ldots, g_k\}$, then the wreath recursion is determined by its values on the generators:

$$\begin{aligned}
\Phi(g_1) &= \pi_1(g_{11}, g_{12}, \dots, g_{1d}), \\
\Phi(g_2) &= \pi_2(g_{21}, g_{22}, \dots, g_{2d}), \\
&\vdots & \vdots \\
\Phi(g_k) &= \pi_k(g_{k1}, g_{k2}, \dots, g_{kd}).
\end{aligned}$$

If we write g_{ij} as groups words in g_1, \ldots, g_k , we get a finite description of the associated self-similar group. (As a wreath recursion over the free group.)