Iterated Monodromy Groups Lecture 2

Volodymyr Nekrashevych

August, 2009 Bath Let $\Phi : G \longrightarrow S_d \wr G$ be a wreath recursion. Denote by K_{Φ} the kernel of the associated action on the tree.

If $g \notin K_{\Phi}$, then there exists a finite word $v \in X^*$ moved by g. Hence there exists an algorithm, which stops if and only if g is not trivial in the self-similar group defined by Φ .

Let E_1 be the kernel of Φ . Denote

$$E_{n+1} = \Phi^{-1}(\{1\} \cdot E_n^d),$$

and $E_{\infty} = \bigcup_{n \ge 1} E_n$. If $E_{\infty} = K_{\Phi}$ and the word problem is solvable in *G*, then the word problem is solvable in G/K_{Φ} .

Sections

Fix a wreath recursion $\Phi : G \longrightarrow S_d \wr G$. Define $g|_v$ for $g \in G$ and $v \in X^*$ inductively by $g|_{\varnothing} = g$ and

$$\Phi(g|_v) = \pi(g|_{v1}, g|_{v2}, \ldots, g|_{vd}).$$

We have

$$g(vw) = g(v)g|_v(w)$$

for all $v, w \in X^*$. For all $g, h \in G$ and $v, u \in X^*$ we have

$$(gh)|_{v} = g|_{h(v)}h|_{v}, \quad g|_{vu} = g|_{v}|_{u}.$$

Virtual endomorphisms

Let $\Phi : G \longrightarrow S_d \wr G$ be a wreath recursion. Suppose that the projection of $\Phi(G)$ onto S_d is transitive.

The associated virtual endomorphism of G is the map $\phi : g \mapsto g|_x$ from the stabilizer of $x \in X$ to G.

The virtual endomorphism uniquely determines the wreath recursion (up to an equivalence). If $\{r_1, r_2, \ldots, r_d\}$ is a coset representative system for $Dom \phi < G$, then we define

$$\Phi_1(g)=\pi(g_1,\ldots,g_d),$$

where $\pi(i) = j$ iff $gr_i \operatorname{Dom} \phi = r_j \operatorname{Dom} \phi$; and $g_i = \phi(r_j^{-1}gr_i)$. Then Φ_1 is equivalent to Φ .

The virtual endomorphism of $\ensuremath{\mathbb{Z}}$ associated with the wreath recursion

$$\Phi(\gamma) = (01)(1,\gamma)$$

associated with IMG $\left(z^2\right)$ is

$$\phi(\gamma^2) = \gamma,$$

i.e.,

 $n \mapsto n/2$

on \mathbb{Z} .

The virtual endomorphism associated with IMG $(-z^3/2 + 3z/2)$, i.e., with the wreath recursion

$$\Phi(a) = (01)(1, a, 1), \quad \Phi(b) = (02)(1, 1, b)$$

is

$$a^2 \mapsto a, \quad b^{-1}ab \mapsto 1$$

 $b^2 \mapsto b, \quad a^{-1}ba \mapsto 1.$

If $\phi : G \dashrightarrow G$ is the virtual endomorphism associated with a wreath recursion Φ , then the kernel K_{Φ} of the self-similar action is

$$\mathcal{K}_{\Phi} = \bigcap_{g \in G, n \geq 1} g^{-1} \cdot \operatorname{Dom} \phi^{n} \cdot g.$$

If $p: \mathcal{M}_1 \longrightarrow \mathcal{M}$ is a partial self-covering, then $\pi_1(\mathcal{M}_1)$ is a subgroup of finite index in $\pi_1(\mathcal{M})$ and the virtual endomorphism associated with the iterated monodromy action is the map $\pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$ induced by the inclusion $\mathcal{M}_1 \hookrightarrow \mathcal{M}$.

Contracting groups

Contracting groups

Definition

A wreath recursion over G is *contracting* if there exists a finite set $\mathcal{N} \subset G$ such that for every $g \in G$ there exists $n \in \mathbb{N}$ such that

$$g|_v \in \mathcal{N}$$

for all words v of length at least n.

Theorem

Let ϕ : $G \dashrightarrow G$ be a virtual endomorphism of a finitely generated group. The number

$$\rho = \limsup_{n \to \infty} \sqrt[n]{\limsup_{g \in \text{Dom}\,\phi^n, I(g) \to \infty} \frac{I(\phi^n(g))}{I(g)}}$$

does not depend on the choice of the generating set and is less than one iff the associated wreath recursion is contracting.

Hyperbolic dynamical systems

Theorem

If the partial self-covering $p : \mathcal{M}_1 \longrightarrow \mathcal{M}$ is expanding, then IMG (p) is a contracting self-similar group. In particular, the iterated monodromy groups of post-critically finite rational functions are contracting.

Algebraic properties of contracting groups

Theorem

The word problem in a contracting self-similar group is solvable in polynomial time.

If ρ is the contraction coefficient of the associated virtual endomorphism, then for every $\epsilon > 0$ there is an algorithm solving the word problem in degree $\frac{\log(|X|)}{-\log \rho} + \epsilon$ time.

Theorem

Contracting groups have no free subgroups.

It is a corollary of

Theorem

Let G be a group acting faithfully on a locally finite rooted tree T. Then one of the following is true

- G has no free subgroups;
- **2** there is a free subgroup $F \leq G$ and a point $\xi \in \partial T$ such that the stabilizer F_{ξ} is trivial;
- So there is a point $\xi \in \partial T$ and a free subgroup $F \leq G_{\xi}$ such that F acts faithfully on all neighborhoods of ξ .

Open questions

- Is the conjugacy problem solvable in contracting groups? Most of the other algorithmic problems are open.
- Are contracting groups amenable?
- Which contracting groups are finitely presented? (Only if they are virtually nilpotent?)
- Given a wreath recursion decide if it defines a contracting group.

The following is a corollary of a more general result of L. Bartholdi, V. Kaimanovich and V. N.

Theorem

If f is a post-critically finite polynomial, then IMG(f) is amenable.

The first non-trivial partial case of this theorem (IMG $(z^2 - 1)$) was shown by L. Bartholdi and B. Virag.

IMG of correspondences

There is no reason to restrict to the case of partial self-covering. A *topological correspondence* is a pair of maps $p : \mathcal{M}_1 \longrightarrow \mathcal{M}$ and $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$, where p is a finite covering and ι is a continuous map.

The associated virtual endomorphism of $\pi_1(\mathcal{M})$ is the homomorphism $\iota_* : \pi_1(\mathcal{M}_1) \longrightarrow \pi_1(\mathcal{M})$, where $\pi_1(\mathcal{M}_1)$ is identified with a subgroup of $\pi_1(\mathcal{M})$ by the isomorphism p_* .

The virtual endomorphism ι_* defines a self-similar group, which is the *iterated monodromy group* of the correspondence.

Dual Moore diagrams

Every virtual endomorphism ϕ of the free group can be realized as ι_* for a map $\iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$, where \mathcal{M} is a bouquet of circles, \mathcal{M}_1 is a finite covering graph of \mathcal{M} defining the domain of ϕ .

Consequently, every self-similar group is an iterated monodromy group of a correspondence on graphs.

Arithmetic-geometric mean of Gauss

Consider the multivalued map on \mathbb{PC}^1 :

$$[z_1:z_2]\mapsto \left[\frac{z_1+z_2}{2}:\sqrt{z_1z_2}\right]$$

or, in non-homogeneous coordinates:

$$z\mapsto \frac{1+z}{2\sqrt{z}}$$

Gauss used iterations of this map (on the positive real axis) to compute the integrals

$$\int_0^{\pi/2} \frac{dt}{\sqrt{a^2 \cos^2 t + b^2 \sin^2 t}}$$

Arithmetic-geometric mean of Gauss

Uniformizing the square root, we get a correspondence

$$f: \mathbb{C} \setminus \{0, \pm 1\} \longrightarrow \mathbb{C} \setminus \{0, 1\} : z \mapsto \frac{(1+z)^2}{4z}$$

 $\iota: \mathbb{C} \setminus \{0, \pm 1\} \longrightarrow \mathbb{C} \setminus \{0, 1\} : z \mapsto z^2.$

 $\pi_1(\mathbb{C} \setminus \{0,1\})$ is naturally identified with the free group $\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \rangle$. Then the associated virtual endomorphism is:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \mapsto \left(\begin{array}{cc} a & b/2 \\ 2c & d \end{array}\right).$$

The action of the free group is faithful and is given by

$$\alpha = \sigma(1, \alpha), \quad \beta = (\beta^2, (\beta^{-1}\alpha)^2).$$

Lattices in Lie groups

Theorem (M. Kapovich)

Let Γ be an irreducible lattice in a semisimple algebraic Lie group G. Then the following are equivalent:

- Γ is virtually isomorphic to an arithmetic lattice in G, i.e., contains a finite index subgroup isomorphic to such arithmetic lattice.
- C admits a faithful self-similar action, which is transitive on the first level.

All such lattices are IMGs of correspondences on the corresponding symmetric spaces.