Iterated Monodromy Groups Lecture 3

Volodymyr Nekrashevych

August, 2009 Bath

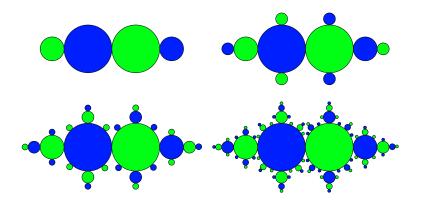
Schreier graphs of iterated monodromy groups

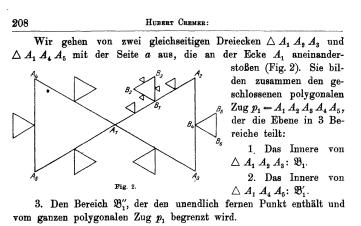
Let us draw the graphs of the action of the generators on the levels X^n of the tree. For example, for the adding machine:

The map $vx \mapsto v : X^{n+1} \longrightarrow X^n$ is a covering of the corresponding graphs. We get double self-coverings of the circle. Limit spaces and Julia sets

Schreier graphs

The Schreier graphs of IMG $\left(-\frac{z^3}{2}+\frac{3z}{2}\right)$

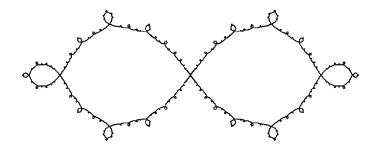




In die Mitte jeder der Seiten von p_1 setzen wir die Spitze eines

The original picture appears in a paper of Gaston Julia in 1918.

The Julia set of $-\frac{z^3}{2} + \frac{3z}{2}$



It looks like the Schreier graphs converge to some limit.

Definition

Let G be a contracting self-similar group acting on X^{*}. Let X^{- ω} be the space of left-infinite sequences ... x_2x_1 , $x_i \in X$. Two sequences ... x_2x_1 , ... $y_2y_1 \in X^{-\omega}$ are equivalent if there exists a bounded sequence $g_k \in G$ such that

$$g_k(x_k\ldots x_1)=y_k\ldots y_1$$

for every k. The quotient of $X^{-\omega}$ by the equivalence relation is the *limit* space \mathcal{J}_G .

The shift $\ldots x_2 x_1 \mapsto \ldots x_3 x_2$ agrees with the equivalence relation, hence it defines a continuous map $s : \mathcal{J}_G \longrightarrow \mathcal{J}_G$.

Topological models of virtual endomorphisms

Let $\phi: G \dashrightarrow G$ be a surjective contracting virtual endomorphism. A *topological model* of ϕ is a metric space \mathcal{X} with a right proper co-compact *G*-action by isometries and a contracting map $F: \mathcal{X} \longrightarrow \mathcal{X}$ such that

$$F(\xi \cdot g) = F(\xi) \cdot \phi(g)$$

for all $\xi \in \mathcal{X}$ and $g \in \text{Dom } \phi$. Note that F induces a well-defined map $F_0 : \mathcal{X} / \ker \phi \longrightarrow \mathcal{X}$, since $F(\xi \cdot g) = F(\xi)$ for $g \in \ker \phi$. More generally, it induces a map $F_n : \mathcal{X} / \ker \phi^{n+1} \longrightarrow \mathcal{X} / \ker \phi^n$. $\mathcal{X} / \ker \phi^n$ is a G-space, for $(\xi \ker \phi^n) \cdot g = (\xi \cdot h) \ker \phi^n$, where $\phi^n(h) = g$.

Theorem

Let $F : \mathcal{X} \longrightarrow \mathcal{X}$ be a topological model of a virtual endomorphism $\phi : G \dashrightarrow G$. Then the inverse limit \mathcal{X}_G of the G-spaces

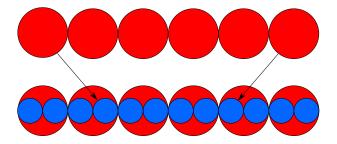
$$\dots \xrightarrow{F_3} \mathcal{X} / \ker \phi^3 \xrightarrow{F_2} \mathcal{X} / \ker \phi^2 \xrightarrow{F_1} \mathcal{X} / \ker \phi \xrightarrow{F_0} \mathcal{X}$$

depends only on G and ϕ . The space of orbits \mathcal{X}_G/G is homeomorphic to \mathcal{J}_G .

Corollary

The limit space of IMG(f) for a post-critically finite rational function f is homeomorphic to the Julia set of f.

Example: a model of $n \mapsto n/2$



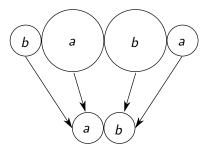
It follows that $\mathcal{X}_{\mathbb{Z}}$ in this case is the line \mathbb{R} and the limit space $\mathcal{J}_{\mathbb{Z}}$ is the circle \mathbb{R}/\mathbb{Z} .

A model of the Julia set of
$$-\frac{z^3}{2} + \frac{3z}{2}$$

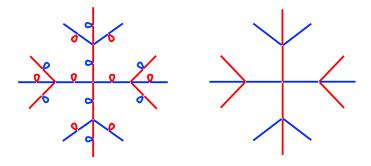
The virtual endomorphism associated with IMG $\left(-\frac{z^3}{2}+\frac{3z}{2}\right)$ is

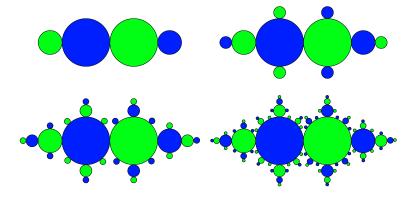
$$a^2 \mapsto a, \quad b^2 \mapsto b, \quad a^b \mapsto 1, \quad b^a \mapsto 1.$$

Take \mathcal{X} to be the Cayley graph of the free group $\langle a, b \rangle$. Let $F : \mathcal{X} \longrightarrow \mathcal{X}$ be the lift to the universal covering of the map



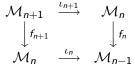
It follows that the graph $\mathcal{X}/\ker\phi^{n+1}$ is obtained from the graph $\mathcal{X}/\ker\phi^n$ by adding a loop in the middle of every edge.





Equivalently, define a model of $\phi : G \dashrightarrow G$ as a correspondence $f, \iota : \mathcal{M}_1 \longrightarrow \mathcal{M}$ of compact spaces such that ι is contracting (with resp. to metrics making f a local isometry) and the virtual endomorphism ι_* of $\pi_1(\mathcal{M})$ is conjugate to ϕ .

Define a covering $f_n : \mathcal{M}_n \longrightarrow \mathcal{M}_{n-1}$ and a map $\iota_n : \mathcal{M}_n \longrightarrow \mathcal{M}_{n-1}$ by the pull-back diagram



Then \mathcal{J}_G is the inverse limit of \mathcal{M}_n w.r. to ι_n .

Examples: \mathbb{Z}^n

Let A be an $n \times n$ -matrix with integer entries and let det A = d > 1. Then the linear map $A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ induces a d-fold self-covering of the torus $\mathbb{R}^n/\mathbb{Z}^n$.

The associated virtual endomorphism is $A^{-1} : \mathbb{Z}^n \dashrightarrow \mathbb{Z}^n$ with the domain $A(\mathbb{Z}^n)$.

Choosing a coset representative system (equivalently a collection of connecting paths) we get the associated action on X^{*}, which corresponds to a *numeration system* on \mathbb{Z}^n .

Let r_1, \ldots, r_d be a coset-representative system of $\mathbb{Z}^n/A(\mathbb{Z}^n)$. Then every element $x \in \mathbb{Z}^n$ is uniquely written as a formal sum

$$x = r_{i_0} + A(r_{i_1}) + A^2(r_{i_2}) + \cdots,$$

where r_{i_k} is defined by the condition

$$x-\left(r_{i_0}+A(r_{i_1})+\cdots+A^k(r_{i_k})\right)\in A^{k+1}(\mathbb{Z}^n).$$

The associated action of $\mathbb{Z}^n = \pi_1(\mathbb{R}^n/\mathbb{Z}^n)$ describes addition of the elements of \mathbb{Z}^n to such formal series.

Theorem (S. Sidki, V. N.)

If no eigenvalue of A^{-1} is an algebraic integer, then IMG $(A) = \pi_1(\mathbb{R}^n/\mathbb{Z}^n) = \mathbb{Z}^n$.

Proposition

The IMG of $A : \mathbb{R}^n / \mathbb{Z}^n \longrightarrow \mathbb{R}^n / \mathbb{Z}^n$ is contracting if and only if A is expanding (i.e., all eigenvalues > 1). In this case the limit space of the IMG is the torus $\mathbb{R}^n / \mathbb{Z}^n$.

The points of $\mathbb{R}^n/\mathbb{Z}^n$ are encoded by the sequences from $X^{-\omega}$ according to "base *A*" numeration system:

$$\xi = A^{-1}(r_{i_1}) + A^{-2}(r_{i_2}) + A^{-3}(r_{i_3}) + \cdots$$

Twin Dragon

- Take A to be multiplication by (1 + i) on \mathbb{C} . We get a degree 2 self-covering of the torus $\mathbb{C}/\mathbb{Z}[i]$.
- Take the coset representatives 0 and 1 of $\mathbb{Z}[i]$ by $(1+i)\mathbb{Z}[i]$. We get a "binary numeration system" on the Gaussian integers.

The torus $\mathbb{C}/\mathbb{Z}[i]$ is the limit space of the associated IMG. The images of the *cylindrical sets* $X^{-\omega}v$, $v \in X^n$ tile the torus by "twin dragons".

Twin Dragon tiling

